
Introduction

Historically, the word ‘alarm’ originates from the Latin, 

‘ad arma’, or the French, ‘à l’arme’, which can be translated 

into ‘to your weapons’. Hence, the word indicates a call 

for immediate action, for attack or for defense. Alarms 

have existed ever since humans have lived in groups. 

Some of the fi rst documented alarms are watchmen on 

towers in the Middle Ages, who warned of fi res or 

enemies by ringing bells. Warning fi res provided a visual 

alert to enemy attacks, visible across long ranges and 

enabling an early reaction of armed forces. Today, com-

parable systems are available that send warning-SMSs 

(Short Message Service) of nearing tsunamis to mobile 

phones [1].

In complex fi elds of work like aviation, mining, anes-

thesiology, and intensive care medicine – and here

particularly with regard to monitoring of vital functions –

alarms are ubiquitous and have been the subject of

medical, technical, and psychological research for

decades [2,3]. Moni toring of vital functions and function

of life-support devices is essential for critically ill

patients, although real evidence based data are missing.

However, modern patient monitors and implemented

risk management (incl uding alarms) must be constructed

in accordance to approved and current international

standards IEC 60601-1-1 1 and IEC 80001-1 [4 ,5]. Ti nker 

et  al. surveyed 1,175  anesthetic-related closed mal prac-

tice claims from 17 pro fessional liability insurance com-

panies. It was determined that 31.5 % of the ne gative

outcomes could have been prevented by use of additional

monitors. Th e authors concluded that monitoring with

adequate thresholds appeared able to improve patient

outcomes [6]. Cooper e t al. showed in the 1980s that 70 %

of all anesthesia-related critical incidents were caused by

human error [7]. Similar da ta are available from the avia-

tion industry [8]. Inevitable mistakes may be corrected in

time if detected by a monitoring system (including

alarms) before physiological variables run out of range.

An alarm is an automatic warning that results from a 

measurement, or any other acquisition of descriptors of a 

state, and indicates a relevant deviation from a normal 

state [9]. Loeb surveyed the re action of anesthesiologists 

to relevant changes in monitoring parameters, and 

showed that anesthesiologists needed a mean time of 

61 seconds to recognize a change in the parameters; 16 % 

of the changes were unrecognized for over 5  minutes 

[10]. In contrast, Morris and Montano studied the reac-

tion of anesthesi ologists to optical and acoustic warnings 

during maintenance of general anesthesia. Th e anesthe-

sio logists showed a reaction time of 6 seconds to optical 

warnings and 1  second to acoustic warnings [11]. An 

ideal alarm should only detect immediate or threatening 

danger that requires prompt attention. Th e alarm design 

should adequately represent the underlying situation. Th e 

announcement of the alarm should be instantly percep-

tible in critical situations. Additionally, the user should 

be informed of circumstances that impair the re liability 

of the alarming system.

In addition to these general properties, device alarms 

have various goals, which follow a certain hierarchy [12]:

• Detection of life-threatening situations: Th e detection

of life-threatening situations was the original purpose

of monitor alarms. False negative alarms are not

acceptable in such situations because of the danger of

severe patient harm or death.

• Detection of imminent danger: Th e early detection of

gradual change that might indicate imminent danger.

• Diagnostic alarms: Th ese alarms indicate a patho physio-

logical condition (e. g., shock) rather than warning of 

‘out-of-range’ variables.

• Detection of life-threatening device malfunction: Th is 

ability is essential for all life-support devices, which 
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must recognize malfunctions, such as disconnection 

from the patient, occlusion of the connection to the 

patient, disconnection from power, gas, or water 

supply, and internal malfunction.

• Detection of imminent device malfunction: Th e early 

detection of device-re lated problems that could result 

in malfunction is an integral part of many therapeutic 

devices. Th ese warning mechanisms range from simple 

aspects (e. g., low-battery warnings) to complex algor-

ithms and sensors that track the wear of respiratory 

valves.

Alarm design

Alarms are typically displayed in two ways or as a 

combination of both:

1. Acoustic

 Th e alarm is given as a warning sound. Most manu-

facturers distinguish the priority of an alarm with 

diff erent signals. Intuitive alarms with diff erent tone 

sequences (e. g. ‘short-long-short’ for ‘ven-ti-late’) have 

been the object of research but have not found their 

way into routine clinical practice. Alarms directly 

mention ing organ systems, device hardware, or parts 

of it (e.  g., ventilation or circulation) or alarms with 

direct labeling of the physiological problem (‘blood-

pressure’ or ‘oxygen’) have also not been introduced 

into practice [13].

2. Visual

 Visual a larms involve mostly fl ashing or coloring of the 

related parameter in an eye-catching manner. Some 

systems provide integrated displays of several para-

meters. One example is a spider-display, which shows 

the relationship of diff erent parameters in a stylized 

spider web. Such applications can be useful to display 

diff erent parameters in context. Compared to other 

professions in industry and aviation, adoption of such 

new displays in healthcare has been slow.

Alarm-related problems

Alarms help to prevent patient harm by providing rapid 

recognition of and reaction to critical situations, but only 

if they are not ‘false alarms’. Medical progress leads to an 

increasing number of ‘monitorable’ parameters and thus 

an increasing number of possible alarms.

False alarms

In medicine, false alarms are conventionally defi ned as 

alarms without clinical or therapeutic consequence. 

Today’s monitoring systems are still designed using a 

‘better-safe-than-sorry’-logic: A large number of false 

alarms are accepted rather than risking missing one valid 

alarm [14]. Alarms can be diff  erentiated into technically 

correct/technically false and clinically relevant/clinically 

not relevant. Alarms can be classifi ed as technically 

correct, if they are based upon a technically correct 

measurement. Technically false alarms are not based on a 

technically correct measurement (e. g., interference with 

pulse oximetry caused by ambient light). Because not all 

technically correct alarms are clinically relevant, they can 

be further diff erentiated into clinically relevant or not 

relevant (e. g., inadequate thresholds).

False alarm rates
Th ere are several studies in the medical literature about 

monitoring alarms in anesthesiology and intensive care 

medicine. Lawless suggested that 94 % of all alarms in a 

pediatric intensive care unit (PICU) were clinically 

irrelevant [15]. Tsien and Fackler also found that 92 % of 

alarms were false alarms in their observation in a PICU 

[16]. In  both studies, all alarms were record ed by the 

nursing staff , who also assessed their relevance and 

validity. O’Carroll reported that only 8 of 1,455  alarms 

were caused by potentially life-threatening situations 

[17]. An observation by Sie big and co-workers showed 

that these results are not limited to the  PICU. Th ese 

authors digitally recorded all the alarms for 38  patients 

on a 12-bed medical ICU and retrospectively assessed 

their relevance and validity: Only 17 % of the alarms were 

relevant, with 44 % being technically false [18]. Chambrin 

et  al. conducted a multicenter study in 199 9, including 

131 medical ICU patients. Th e medical staff  recorded all 

alarms, which were assessed according to their relevance 

and the reaction of the medical staff . Twenty-six percent 

of the alarms had marginal consequences, for example 

leading to re-positioning of sensors. In only 6 % did the 

alarm lead to a call for a doctor. Seventeen percent were 

the result of technical problems and 24 % were caused by 

staff  manipulation [14].

In contrast to ICU observations, there are only a few 

studies abou t false alarms in perioperative settings. 

Comparison between the ICU and the operating room 

(OR) is limited in part because ICU patients are only 

sedated and not anesthetized, causing higher rates of 

patient movement artifacts. Furthermore, in the OR, 

changes in patients’ conditions often occur much more 

rapidly than in the ICU because of changes in the depth 

of anesthesia and surgical manipulation (e. g., extensive 

blood loss).

Schmid et  al. [19] studied perioperative alarms in a  

highly complex surgical setting and included 25 patients 

undergoing elective cardiac surgery with extracorporeal 

circulation. All patient monitor and anesthesia work-

station alarms were digitally recorded. Additionally, the 

anesthesiology workplace was videotaped from two 

angles to allow better assessment of external infl uences, 

retro spectively. During 124  hours of monitoring, 8,975 

alarms were recorded: 7,556  alarms were hemodynamic 

alarms, 1,419  alarms were ventilation-related. Th is 
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corresponded to 359  ±  158  alarms per procedure 

(1.2 alarms/minute). Th e reaction time to the a larms was 

on average 4 seconds. Of all the alarms, 96 % were caused 

by threshold violations. Of the 8,975 alarms, 6,386 were 

classifi ed as serious and life-threat ening and analyzed 

further: 4,438 (70 %) of these were labeled as valid, 1,948 

(30 %) were caused by artifacts; 1,735 (39 %) of the valid 

alarms were classifi ed as relevant, 2,703 (61 %) were not 

relevant.

Th ese results supported earlier studies in less complex 

settings. Seagull and Sanderson sur veyed perioperative 

alarms in diff erent surgical disciplines (arthroscopic, 

cardiac surgery, abdominal surgery, and neurosurgery) 

with 6 cases in each discipline. Th e authors found 72 % of 

alarms had no clinical consequences [20]. A study by 

Kestin et al. [21] included 50 pediatric  patients (1 month 

to 10  years o ld) in the OR of a pediatric hospital 

(pediatric surgery, eye surgery, dental surgery, orthopedic 

surgery) and also found that 75 % alarms had no thera-

peutic consequences (1 alarm per 4.5 minutes on average). 

Only 3  % of all alarms indicated cri tical situations [21]. 

However, the studies by Kestin [21] and Seagull [20] were 

l imited by the fact that 5 and 6  diff e rent monitors, 

re spectively, were used in these observational studies.

Artifacts: a common source of false alarm
Many false alarms are caused by artifacts. Th e main 

sources of artifact are well known and are of physiological 

and non-physiological origin. Most of these artifacts 

directly infl uence the measured signals [22], leading to 

incorrect measurements and this, in turn, triggers the 

alarm. Th e most common artifacts and the ir sources are 

listed in Table 1.

Consequences of false alarms
Th e story of “the shepherd who cried wolf” appears in 

Aesop’s Fables and, with some minor variations, can be 

found in the folklore of many di ff erent cultures. “One 

day, just to stir up excitement, the shepherd boy rushed 

down from the pasture, crying ‘Wolf! Wolf!’ Th e villagers 

heard the alarm and came running to help chase the 

marauder away, only to fi nd the sheep peaceful and no 

wolf in sight. But there came a day when a wolf really 

came. Th e boy screamed and called for help. But all in 

vain! Th e neighbors, supposing him to be up to his old 

tricks, paid no heed to his cries, and the wolf devoured 

the sheep!” [23].

Based on this Fable, Breznitz formed the phrase 

“Crying-Wolf-Phenomenon” for the desensitization 

caused by high false alarm rates, with the possible conse-

quence of ignoring relevant alarms [24]. Th e high 

incidence of false alarms in anesthesiology and inte nsive 

care medicine is not only a disturbance but a risk factor 

when relevant alarms in critical situations are ignored. 

Th at this phenom enon is not limited to monitoring 

alarms was im pressively demonstrated by the attack of 

the Japanese air force on the United States Navy at Pearl 

Harbor, Hawaii on December  7, 1941. Despite a valid 

advance warning by the new radar technology, no 

appropriate reaction followed. Th e simultaneous report 

of a contact and the destruction of an enemy submarine 

also did not lead to a reaction be cause the commanding 

admiral wanted to wait for confi rmation due to frequent 

false alarms [25].

Various studies have shown that anesthesiologists’ 

reaction ti mes to alarms increases in situations where 

there is low alarm validity [26,27]. Th e annoyance from 

false alarms may also lead to complete inactivation of 

alarms or to inappropriately wide thresho ld s ettings by 

the clinical user to limit alarms as much as pos sible. 

Th ereby, the ‘mesh of the alarm-net’ gets wider and the 

risk of missed relevant alarm increases [28].

Medical staff  and alarms

Alarms in the ICU and in the OR frequently lead to 

sound l evels up to 70 dB(A). Th is level corresponds to 

heavy traffi  c. Sound levels up to 90 dB are not rare [29]. 

In a study by Hagerman et al., 94 patients with chest pain 

were  retrospectively dis tributed into a good and poor 

acoustic group. Acoustics were altered during the study 

period by changing the ceiling tiles throughout the ICU 

from sound-re fl ecting (poor acoustics) to sound-

absorbing tiles (good acoustics) of similar ap pearance. 

Th e patients were asked to complete a questionnaire 

about the quality of care. Th e patients considered the 

staff  attitude was much better in the good acoustics 

period [30]. Increased sound levels caused by alarms can 

impact on the health  of the medical personnel. In 1988, 

Topf and Dillon demonstrated the relationship between 

in creased sound levels in ICUs and burn-out syndromes 

in ICU nurses [31].

Patients and alarms

For undisturbed night-sleep, sound levels bel ow 40 dB(A) 

are recommended. As sound levels on the ICU are 

frequently above this level, sleep deprivation in ICU 

patients is well recognized [32]. Sleep deprivation in ICU 

patients leads to an impairment of the i mmune response 

and increased sympathetic nervous system activity: 

Catecholamine secretion increases heart rate, metabo-

lism, and oxygen consumption [33]. Frequent arousal 

from sleep may lead to cardiac arrhythmias in pa tients 

with pre-existing heart disease but also in healthy 

patients [34]. Minckley reported signifi cantly increased 

opioid needs when noise  levels were high in her obser-

vation of 644 postoperative patients [35]. In the study by 

Hagerman et  al., patients during the good acoustic  

(sound-absorbing ceiling tiles) period had lower pulse 
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amplitude values than those in the bad acoustic group; 

patients in the bad acoustics group also had higher rates 

of re-hospitalization after 1 (18 % vs. 10 %) and 3 months 

(48 % vs. 21 %) [30]. In a recent study, Van Rompaey et al. 

found reduced rates and later onse t of delirium in 

patients who slept with earplugs at night [36].

Technical approaches for false alarm reduction

Essentially, there are thr ee technical approaches to help 

reduce false alarms: (1)  Im proving signal extraction 

(prevention or detection of artifacts); (2)  improving al-

gorithms for alarm generation; (3) improving alarm valida-

tion. An algorithm for alarm generation can be based on a 

single parameter (e.  g., heart-rate or mean arterial 

pressure) or on several parameters simulta neously (e.  g., 

heart rate detection from elecrocardiogram [EKG], pulse 

oximetry oxygen saturation [SpO
2
] and arterial line). Most 

devices are equipped with alarms based on a single 

parameter. In recent years, diff erent approaches for false 

alarm reduction have been developed.

Phase specifi c settings

Observations, especially in surgical settings, have shown 

that diff erent phases of the surgical procedure are 

characterized by diff erent numbers and types of false 

alarms and also diff erent patterns of alarms and specifi c 

reactions by the medical staff  (e. g., during induction and 

emergence of anesthesia, during extracorporeal circula-

tion, or single lung ventilation, or suctioning of patients). 

Schmid et al. found diff erent characteristic patterns and 

density of alarms in 4  diff erent intraoperative phases 

(beginning of surgery, start of extracorporeal circulation 

[ECC], end of ECC, end of surgery) [19].

Seagull and Sanderson also diff erentiated three diff er-

ent phases in anesthesia procedures (introduction, main-

tenance and emergence) and found characteristic 

patterns of alarms and alarm reac tions in each phase [20].

Th is knowledge could be used for the development of 

phase specifi c settings to reduce false alarms (e.  g., for 

specifi c settings fo r surgery or on the ICU).

Integrated validation of alarms (cross checking)

Matching of diff erent parameters can be used for the 

reduction of false alarms: e. g., a ‘ventricular fi brillation’ 

alarm can be assumed to be false in the presence of 

undisturbed pulse oximetry and arterial blood pressure 

waveforms. Aboukhalil et al. [37] were able to reduce the 

incidence of false arrhythmia-related alarms from 42.7 % 

Table 1. Monitoring parameters and related artifacts

Signal Artifact source Parameter

Ventilatory alarms

 Pulse oximetry Movement Oxygen saturation

  Injection of contrast dye Pulse frequency

  Interruption of blood-fl ow by non-invasive blood pressure 

  measurement

  Ambient light

 Capnography Occlusion of CO
2
-line (by kinking or built up fl uid) End-tidal CO

2

  Ventilator circuit leakage Inspired CO
2

  Atmospheric pressure variations Respiratory rate

  Suctioning

  Dead space in measurement circuit

Hemodynamic Alarms

 EKG Electrosurgical interference Heart rate,

  Power-line interference ST-values

  Movement artifacts (patient movement, positioning) Arrhythmia detection

  Electrode instability or electrode distortion

  EMG/neuromonitoring interference

  Incorrect connection or lead contact

  Pacing/defi brillation

  Abnormally tall T-waves mistaken as QRS-complex

  MRI interference

 Non-invasive blood pressure Movement Systolic, diastolic blood pressure

  Inadequate size or cuff  position Mean arterial pressure

  Compression of cuff  by external forces (surgeon or equipment 

  pressing against the cuff 

  Kinked cuff  tubing and leaking cuff  bladder

Other Alarms

 Temperature Dislocated sensor Temperature

EKG: electrocardiogram, EMG: electromyogram, MRI: magnetic resonance imaging, CO2: carbon dioxide
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to 1 7.2  % in an offl  ine application on a database of 

447  patients (5,386  arrhythm ia alarms).  However, 9.7  % 

of the true cases of ventricular fi brillation were not 

detected; this situation is ina dmissible for a lethal 

arrhythmia. Removal of ventricular arrhythmias from the 

algorithm still resulted in reduction in the incidence of 

false alarms to  22.7 % [37].

Implementation of time delays

Görges et al. [38] showed in an ICU setting and Sc hmid 

et al . [19] in an intraoperative setting that a great num ber 

of false alarms are caused by only mild thres hold viola-

tions of short duration. In an offl  ine validation, Görges 

et  al. showed that the implementation of a 14-second 

delay reduced false alarms by 50  %; a 19-second delay 

reduced false alarms by 67  %. However, a simple delay 

carries the risk of unrecognized critical situations of 

short duration (e. g., short self-limiting tachy cardia). Th e 

implementation of a graduated delay brings additional 

safety and fl exibility to that approach. First, severe 

deviations are alarmed faster; this results in improved 

patient safety. Second, the graduation off ers the 

possibility of a prolonged delay (more than 14 seconds) in 

cases of only moderate and clinically not-relevant 

deviations. However, studies using such an approach are 

still missing.

Statistical approaches for false alarm reduction

Improved signal extraction is an essential approach for 

reduction of false alarms caused by artifacts. Several 

approaches have been developed over the last decades.

Autoregressive models and self-adjusting thresholds

An autoregressive model describes measurement values 

as a linear transformation and integrates previous 

values plus a random error. An autoregressive model is 

appro priate for the observation of values in steady-state 

and for alarm generation caused by deviation from 

steady-state. It is also used for generation of self-ad-

justing thresholds, because of integration of the 

individual patient’s condi tion. However, self-adjusting 

thresholds always have to be elaborated and confi rmed 

by the user [9].

Statistical process control

Statistical approaches are  commonly used in alarm 

systems to detect ‘out-of-control’ states in a process. Th e 

original applications were in industrial production pro-

cesses but they are also used for alarm generation. 

Kennedy used a process control approach to  detect the 

onset of changes in systolic blood pressure [39]. Th e 

algorithm was tested on an existing database and detected 

94 % of changes correctly, whereas anesthesiologists only 

detected 85 %.

Median fi lters

Th e median fi lter is a non-linear, signal processing 

method used for removal of short-term noise in measure-

ment signals without infl uencing the baseline signal. For 

this purpose, the median is calculated for a defi ned 

 interval. Th us, the signal is ‘smoothed’ and short noises, 

such as movement artifacts or interference from electro-

surgery, are eliminated. Th is method is limited in long-

lasting interferences that exceed the adjusted duration of 

the fi lter. Mäkivirta et al. [40] evaluated the eff ectiveness 

of a combination of a “short” (15  seconds) and a “long” 

(2.5  min utes) fi lter in a database of 10  ca rdiac surgery 

patients. Th e use of the fi lter increased the alarms that 

had therapeutic consequences from 12 to 49  %; the 

authors declared that no relevant alarms were missed.

Artifi cial intelligence

Although statistical approaches are predominantly used 

for the reduction of artifacts, artifi cial intelligence off ers 

the possibility of integrating more complex contexts. Th is 

approach tries to validate alarms by imitating human 

thinking. Artifi cial intelligence can be embedded into 

decision-making systems. A paper by Im hoff  and Kuhls 

provides an overview of artifi cial intelligence use in 

intensive care monitoring [9].

Rule-based expert systems

Rule-based expert systems are based on an integrated 

expert knowledge database. Some early rule-based expert 

systems were developed for medical use in the 1970s 

(MYCIN-System, ONCOCIN-System) [41]. Th ese early 

sy stems applied expert knowledge from a database into a 

new context and simulated expe rt decisions in oncology 

and therapy of infectious diseases. In 1993, Sukuvaara 

et al. [42] developed an alarm system for the detection of 

hypovolemia, hyperdynamic circulation, left-heart failure, 

and hypoventilation. Although results showed that rule-

based expert systems work well in the context of patho-

logic conditions, they have not been introduced into the 

clinical arena. Th  e expansion of rule-based expert systems 

by so-called machine-learning is possible, whereby the 

pre-existing database is updated by actual patient data.

Neural networks

Neural networks were developed to imitate the neuronal 

process of human thinking. Th ey are able to anticipate 

the presence of diseases on the basis of advance infor-

mation (e.  g., hemodynamic data from a myocardial 

infarction study group). Baxt and Skora [43] developed a 

neural network for early detection of myocardial inf arc-

tion in patients admitted to a hospital with chest pain. 

Th e system was “trained” to detect specifi c changes in 

patients with myocardial infarction by implementation of 

a database (350  patients, 120 of whom had myocardial 
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infarction). Th e results showed that the neural network 

was able to detect or to exclude infarction with a sensi-

tivity and specifi city of 96 %. Th e doctors at the respective 

emergency department achieved an average sensitivity of 

73.3  % and specifi city of 81.1  %. Neural networks have 

also been used  for alarm generation in an esthesia 

ventilators [44].

Fuzzy logic

Fuzzy logic was introduced by Zadeh in the 1960s [45].  A 

common problem in clinical routine is the aim for 

objectivity and precision when the information does not 

allow an  explicit conclusion. Fuzzy logic allows diff use 

processing of exact data. Fuzzy logic is widely used in 

industry (e. g., for picture stabilization in cameras). Gold-

man and Cordova [46] demonstrated a patient monitor 

that was able to diagnose a simulated cardiac arrest by 

evaluatio n of EKG, capnography, and arterial blood 

pressure using fuzzy logic.

Bayesian networks

Bayesian networks have been used for estimation of event 

occurrence. In patient monitoring, they can be used for 

decision support. Laursen developed software for cardiac 

event detection [47]. Th e software continuously com-

pared diff erent physiologic parameters and their changes; 

thus, it was possible to check values against each other 

for plausibility and to anticipate cardiac events.

Conclusion

Medical progress has led to obvious improvements  in 

ICU and perioperative monitoring over recent decades. 

With the increase in ‘monitorable’ parameters, rates of 

alarms have also increased. But technical progress has 

rarely aff ected the rates of false alarms. In addition to 

noise-related increase in burn-out rates, false alarms lead 

to desensitization of medical staff  to alarms with the risk 

of critical situations potentially being ignored despite 

correct alarming. Patients are also directly aff ected by 

alarm-related sleep disorders with subsequent develop-

ment of delirium and increased sympathetic nervous 

system activity and catecholamine secretion. In recent 

years, many promising approaches using statistical 

methods and artifi cial intelligence have been developed 

for the reduction of false alarms without obvious changes 

in false alarm rates in our clinical reality.
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