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Abstract

Introduction: This study was carried out to investigate the prognostic utility of biomarkers in advanced stage
heart failure (HF) patients requiring ICU admission for pulmonary artery catheter (PAC) guided therapy.

Methods: Thirty patients admitted to an ICU for PAC guided HF therapy were enrolled; concentrations of soluble
ST2 (sST2), highly sensitive troponin I, an experimental ultrasensitive troponin I, amino-terminal pro-B type
natriuretic peptide, cystatin C, and myeloperoxidase were measured over the first 48 hours. Outcomes included
response of filling pressures and hemodynamics to tailored therapy and 90-day event-free survival (death, left
ventricular assist device implantation, transplant).

Results: Of the biomarkers evaluated, only sST2 concentrations were higher in those who failed to achieve goals
for central venous pressure ((CVP), 225.3 versus 104.6 ng/mL; P = 0.003) and pulmonary capillary wedge pressure
((PCWP), 181.7 versus 88.2 ng/mL; P = 0.05). Only sST2 concentrations were associated with adverse events (186.7
versus 92.2 ng/mL; P = 0.01). In age-adjusted Cox proportional hazards analysis, an elevated sST2 during the first 48
hours following ICU admission independently predicted 90-day outcomes (Hazard Ratio = 5.53; P = 0.03) superior
to the Simplified Acute Physiology Score for this application; in Kaplan-Meier analysis the risk associated with
elevated sST2 concentrations was present early and sustained through the duration of follow-up (log rank P =
0.01).

Conclusions: In patients undergoing HF therapy guided by invasive monitoring, sST2 concentrations were
associated with impending failure to reduce filling pressures and predicted impending events. Elevated sST2 values
early in the ICU course theoretically could assist therapeutic decision-making in advanced stage HF patients.

Trial registration: ClinicalTrials.gov Identifier: NCT00595738

Introduction
The rising incidence of heart failure (HF) accounts for a
rapidly increasing rate of hospitalization and death for
those afflicted, with a consequent effect on overall costs of
health care; each year, approximately $24 billion is spent
on HF hospitalizations [1]. A large percentage of these
cost outlays are due to patients suffering from advanced
stages of HF. Although advanced stage HF patients com-
prise only a small portion of the total affected population,
they have a very high risk of in-hospital morbidity and

mortality and require the most intensive resources [2,3].
In one study of patients with New York Heart Association
(NYHA) Class IV HF, ICU costs alone accounted for a
quarter of the total expenditures during the final six
months of life [4]. In this context, earlier and more specific
recognition of elevated risk could theoretically guide clini-
cians’ selection of more advanced therapies tailored to the
baseline risk of the patient, potentially streamlining their
care.
One increasingly-used option for risk assessment in

HF patients is biomarker testing. Ventricular dysfunc-
tion and elevated filling pressures in severe HF trigger a
cascade of deleterious pathophysiologic responses
including inflammation, tissue remodeling, cardiorenal
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syndrome and neurohormonal dysregulation [5], all of
which are associated with adverse outcome. The
natriuretic peptides (for example, B-type natriuretic pep-
tide (BNP) and its amino terminal cleavage fragment
[NT-proBNP]) are the most widely used diagnostic and
prognostic biomarkers in HF [6-8]. Additionally, con-
centrations of troponin, the interleukin receptor family
member soluble (s)ST2 [9-11], renal measures such as
cystatin C (cys-C) [12], and inflammatory markers such
as myeloperoxidase (MPO) [13,14] have all been linked
to adverse risk in HF, presumably as they reflect these
various deleterious processes in such patients. While the
potential value of various biomarkers for prognosis has
been explored in detail across a wide spectrum of
patients with HF, their specific prognostic value in
affected patients at more advanced stages of HF, in
whom decisions for advanced HF interventions fre-
quently hinge on prognosis, remains less well explored.
In theory, the use of biomarkers might be useful to
decide at an earlier stage, prior to failure of invasive
means of treatment, such as pulmonary artery catheter
(PAC) guided therapy, whether a patient may require
more direct referral for left ventricular assist device
(LVAD) implantation or transplantation.
Accordingly, we evaluated a wide range of biomarkers

reflecting various pathophysiologies in HF. We wished
to determine the individual or additive role of each bio-
marker in predicting response to PAC guided therapy,
as well as their relationship to short-term outcome fol-
lowing ICU admission.

Materials and methods
All patients provided written informed consent and the
study protocol detailed below and as described in Clinical-
Trials.gov NCT00595738 was approved by the Partners
Human Research Committee institutional review board.
The original goal of the study was to evaluate the relation-
ship between mixed venous, central venous, and periph-
eral oxygen saturation in patients with advanced HF.
These results have not been analyzed at the time of this
publication. Secondary goals included investigation of cor-
relations between biomarkers and PAC data. As an
exploratory analysis, we also decided to evaluate outcomes,
as defined below.

Study population and design
Between December 2007 and August 2010, we prospec-
tively enrolled 30 patients with advanced stage NYHA
Class IV HF due to LV systolic dysfunction who were
admitted to the Cardiac ICU at Massachusetts General
Hospital for treatment guided by PAC monitoring.
Patients were recruited for the study at the time of PAC
placement.

Primary inclusion criteria were age ≥21 years and PAC
insertion for management of HF by their attending car-
diologist. At the time of PAC insertion all patients had
evidence of decompensated HF manifesting in either:
central venous pressure (CVP) >8 mmHg, pulmonary
capillary wedge pressure (PCWP) >16 mmHg, systemic
vascular resistance (SVR) >1200 dyn-sec/cm5 or cardiac
index <2 L/minute. Participants were excluded if they
had known or suspected septic shock or bacteremia,
active bleeding or hematocrit <24% at baseline, arterial
oxygen saturation <90% at baseline despite supplemental
oxygen therapy, femoral insertion of PAC, or if they
were unable or unwilling to provide informed consent.
At the time of study entry, detailed clinical data regard-
ing past medical history, vital signs, medications, base-
line laboratory data and left ventricular ejection fraction
(EF) were collected.
Blood samples were collected twice daily, in the morn-

ing and evening, from the distal PAC port for the first
48 hours with corresponding hemodynamics and filling
pressures noted at the time of the blood draws. All
patients received standard HF management as recom-
mended by contemporary guidelines [15]. Clinical man-
agement decisions about each patient, including timing
regarding PAC removal and/or referral for LVAD place-
ment or transplant, were made by the providing cardiol-
ogist who was blinded to biomarker concentrations,
which were determined following completion of follow
up.

Biomarker analysis
Blood samples drawn for measurements of cardiac bio-
markers were immediately spun and aliquots of plasma
were stored at -80°C until analyzed. Testing for all of
the assays was done in a random batch order, and test-
ing personnel were unaware of the clinical status of the
patients. Plasma concentrations of NT-proBNP, highly
sensitive troponin I (hsTnI) and cys-C were determined
on a Dimension Vista® System, while plasma concentra-
tion of MPO was determined on a Dimension® RxL
Clinical Chemistry System from Siemens Healthcare
Diagnostics (Tarrytown, NY, USA). In addition, a sensi-
tive research prototype TnI (eTnI) assay was also run
on the Dimension Vista® System. The NT-proBNP,
hsTnI and eTnI assays are all one-step sandwich chemi-
luminescent immunoassays based on LOCI (luminescent
oxygen channeling assay) technology. The cys-C assay is
a particle-enhanced immunonephelometric assay, and
the MPO assay is a one-step sandwich enzyme immu-
noassay utilizing chrome particles. Plasma concentra-
tions of sST2 were measured using the highly-sensitive
Presage ST2® Assay (Critical Diagnostics, San Diego,
CA, USA) that has previously been validated [16].
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Calibration of the assays was according to the manufac-
turer’s protocol.

Outcomes
Serum concentrations of the investigated biomarkers (NT-
proBNP, hsTnI, eTnI, cys-C, MPO, and sST2) were
hypothesized to predict outcomes in 30 heart failure
patients admitted to an intensive care unit for PAC guided
therapy. The primary outcome measure was failure to
achieve individual goals for specific hemodynamic vari-
ables (CVP, PCWP, SVR) as part of PAC guided HF man-
agement within 48 hours after ICU admission, PAC
removal or ICU discharge. Goals were pre-specified
according to standard of care [17], and included: CVP <8
mm Hg, PCWP <16 mm Hg and SVR <1200 dyn-sec/cm5.
Each hemodynamic variable (CVP, PCWP and SVR) was
examined as a discrete element of PAC directed therapy.
In addition to response to PAC guided therapy,

patients were clinically followed for events (defined as
all-cause mortality, LVAD implantation, or heart trans-
plantation) for 90 days, which was evaluated as a second-
ary outcome. Outcomes were ascertained from available
medical records; mortality was confirmed via a Social
Security Death Index database search.

Statistical analysis
Demographics and clinical and laboratory variables were
compared with Student’s t-test (in states of normality)
and Wilcoxon rank-sum testing (where non-normal).
Biomarker concentrations, cardiac filling pressures and
hemodynamics at matched time points were assessed for
correlation using the Pearson method.
The highest biomarker value during the first 48 hours

was used for each patient to explore outcomes. Patients
were categorized as a function of response or non-
response to therapy guided by invasive monitoring. The
ability of biomarkers to predict non-response, defined as
failure to achieve filling pressure goals as described above,
was assessed by receiver operating characteristic (ROC)
analysis with area under the curve (AUC) calculated. The
optimum cut-point was identified as the point on the
ROC curve that maximized both sensitivity and specificity.
In an effort to understand better the association between
sST2 values and risk for non-response, we performed step-
wise logistic regression analyses, utilizing all the variables
in Table 1 in a univariate screen with a retention variable
of 0.10 for inclusion in the multivariate model. Separate
models were performed for non-response in CVP, PCWP
and SVR. From these, odds ratios (OR) and 95% confi-
dence intervals (CI) were generated. Given the lack of a
clearly defined sST2 value for each non-response category,
the biomarker was entered as a log-transformed, continu-
ous variable.

In a similar fashion, biomarker concentrations were
fitted to ROC curves for their ability to predict death,
implantation of an LVAD, or heart transplantation within
90 days, and compared to the Simplified Acute Physiology
Score (SAPS) II [18]. Then, all factors listed in Table 1
were tested for univariate prediction of events (death,
LVAD implantation or heart transplantation), and signifi-
cant covariates are reported. Only significant univariate
predictors were entered into an age-adjusted Cox propor-
tional hazards model. From the Cox model, hazard ratio
(HR) and 95% CI were generated. The cumulative inci-
dence of death, LVAD or heart transplantation was also
estimated using the Kaplan-Meier method with curves
compared with the log-rank test. If a patient experienced
more than one event within the 90 days, for example, car-
diac transplantation and death, only the first event was
included in analysis. All tests were two-sided, and a
P-value < 0.05 was considered statistically significant. All
statistics were performed with SPSS (Chicago, IL, USA),
STATA (College Station, TX, USA), or MATLAB (Natick,
MA, USA) software.

Results
Baseline clinical and hemodynamic characteristics
A total of 149 patients were deemed potentially eligible for
the study and 30 patients were enrolled; 119 of the eligible
patients were excluded primarily for the following reasons:
anemia, intubation, and refusal for participation.
Characteristics of the study population at presentation

(n = 30) are detailed in Table 1. The median age was 57
(interquartile range (IQR) = (50 to 65)) years, the major-
ity were men (77%), and the subjects had marked LV sys-
tolic dysfunction (median LVEF 21%). The majority of
patients were considered candidates for heart transplan-
tation. The majority of patients were on optimal HF
medical therapy; when not on such therapy, the usual
comorbid reasons for its cessation at this stage of disease
were present, including the need for inotropic agents or
severe renal insufficiency (mean serum creatinine
2.0 mg/dL). Clinical follow up for outcomes was deter-
mined in all 30 patients and 16 out of 30 patients had
biomarker and hemodynamic data for each time point,
with the majority of patients (77%) with data for three of
the four time points. Patients had the PAC removed a
mean of three days following ICU admission.

Filling pressures, hemodynamics, and interventions
Baseline hemodynamic measurements revealed elevated
cardiac filling pressures (CVP 10 (8 to 17) mmHg, and
PCWP 24 (17 to 28) mmHg). Patients also had evidence
of systemic vasoconstriction with elevated SVR 1,366 (993
to 1,590) dyn·s/cm5. The cardiac index was also decreased
in the study population; 50% of the patients had a cardiac
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Table 1 Baseline clinical characteristics of the study population and clinical characteristics stratified by event (Death/
LVAD implantation/transplant) at 90 days.

Characteristic All Patients
(Number = 30)

No Event
(Number = 13)

Event
(Number = 17)

Pa

Age 57 (50 - 65) 57 (45 - 63) 61 (53 - 65) 0.36

Male sex, number (%) 24 (77) 9 (69) 15 (88) 0.36

Ejection fraction, % 21 (17 - 30) 28 (19 - 35) 19 (17 - 25) 0.08

History, number (%)

Ischemic cardiomyopathy 14 (47) 6 (46) 8 (47) 0.82

Prior myocardial infarction 8 (27) 5 (39) 3 (18) 0.24

Hypertension 4 (17) 3 (23) 2 (12) 0.63

Diabetes mellitus 11 (37) 5 (39) 6 (35) 1.00

Ventricular tachycardia 12 (40) 2 (15) 10 (59) 0.03

Resuscitated sudden cardiac death 5 (17) 1 (8) 4 (24) 0.36

Smoking (past or present) 16 (53) 8 (62) 8 (47) 0.57

Atrial fibrillation 11 (37) 3 (23) 8 (47) 0.26

Chronic kidney disease 9 (30) 3 (23) 6 (35) 0.69

Hypothyroidism 7(23) 2 (15) 5 (29) 0.43

Medications on Presentation, number (%)

b-blocker 24 (80) 11 (85) 13 (77) 0.67

ACE Inhibitor 13 (43) 5 (39) 8 (47) 0.72

ARB 7 (23) 3 (23) 4 (24) 1.00

Aldosterone antagonist 21 (70) 8 (62) 13 (77) 0.44

Loop diuretics 28 (93) 11 (85) 17 (100) 0.18

Digoxin 9 (30) 2 (15) 7 (41) 0.23

Medications During Study, number (%)

Diuretics 29 (97) 12 (92) 17 (100) 0.43

Afterload reducing agents 13 (43) 7 (54) 6 (35) 0.46

Inotropic agents 25 (83) 9 (69) 16 (94) 0.14

Physical Examination

Heart rate, beats/min 78 (70 - 90) 84 (71 - 93) 74 (70 - 82) 0.17

Systolic blood pressure, mmHg 97 (90 - 104) 99 (91 - 104) 96 (85 - 104) 0.37

Body-mass index, kg/m2 25 (22 - 28) 26 (24 - 29) 24 (23 - 27) 0.25

Laboratory Results

Blood urea nitrogen, mg/dL 25 (20 - 39) 30 (18 - 45) 24 (20-40) 0.90

Creatinine, mg/dL 1.3 (1.1 - 1.8) 1.2 (0.9 - 1.9) 1.4 (1.2 - 1.9) 0.32

Hemoglobin, g/L 12.0 (10.1 - 12.7) 12.3 (11.9 - 12.7) 11.3 (9.8 - 12.7) 0.18

Sodium, mmol/L 138 (133 - 140) 140 (138 - 141) 134 (132 - 138) 0.01

Hemodynamic Indices

Central venous pressure, mmHg 10 (8 - 17) 10 (8 - 14) 9 (8 - 17) 0.73

Pulmonary artery systolic pressure, mmHg 52 (46 - 56) 55 (52 - 60) 48 (36 - 51) 0.01

Pulmonary artery diastolic pressure, mmHg 23 (18 - 28) 26 (24 - 31) 21 (16 - 22) 0.01

Pulmonary capillary wedge pressure, mmHg 24 (17 - 28) 25 (23 - 28) 23 (15 - 28) 0.31

Systemic vascular resistance, dyn-s/cm5 1,366 (993 - 1,590) 1,484 (974 - 1,666) 1,281 (997 - 1,557) 0.65

Cardiac index, L/min/m2 2.0 (1.7 - 2.4) 2.1 (1.7 - 2.4) 2.0 (1.8 - 2.3) 0.73

Biomarker Results

sST2, ng/mL 148 (88 - 226) 87 (66 - 145) 183 (112 - 258) 0.02

NT-proBNP, pg/mL 5,205 (2,591 - 10,021) 4,437 (2,943 - 10,185) 5,388(2,287 - 13,840) 0.77

hsTnI, ng/mL 0.10 (0.04 - 0.20) 0.03 (0.02 - 0.05) 0.05 (0.02 - 0.17) 0.32

eTnI, ng/mL 49.9 (24.0 - 140.4) 29.6 (21.9 - 79.4) 60.6 (28.5 - 214.2) 0.20

cys-C, ng/mL 1.85 (1.11 - 2.16) 1.42 (0.95 - 2.23) 1.93 (1.50 - 2.63) 0.27

MPO, pM 860 (513 - 1353) 1,218 (588 - 1813) 803 (455 - 1138) 0.23

Prognostic Indices

SAPS II 22 (18 - 29) 21 (18 - 29) 23 (18 - 29) 0.78
aP value for difference between those with an event and those without. Continuous variables are expressed as median and interquartile range. ACE, angiotensin
converting enzyme; ARB, angiotensin II receptor blocker; BUN, blood urea nitrogen, cys-C, cystatin C; eTnI, experimental research prototype Troponin I; hsTnI,
highly sensitive Troponin I; LVAD, left ventricular assist device; MPO, myeloperoxidase; NT-proBNP, amino terminal cleavage fragment of B-type natriuretic
peptide; SAPS II, Simplified Acute Physiology Score II; sST2, soluble ST2.
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index less than 2.0 L/min/m2. At the discretion of the pri-
mary cardiologist who was blinded to biomarker measure-
ments, nearly all the patients were treated with diuretics
(97%), the majority was given inotropic agents (83%) to
augment contractility and fewer than half were given after-
load reduction (43%). Table 1 details the specific HF treat-
ments applied to the study population.

Biomarker concentrations and correlates
Within the first 48 hours following placement of the PAC,
the median (IQR) sST2 concentration was 129.5 ng/mL
(86.8 to 226.9), NT-proBNP was 5,205 (2,511 to 11,204)
pg/mL, hsTnI was 0.036 (0.00 to 0.12) ng/mL, eTnI was
49.9 (22.4 to 157.8) pg/mL, cys-C was 1.85 (1.07 to 2.16)
ng/mL and MPO was 860 (500 to 1,400) pM.
Significant positive correlations were observed between

NT-proBNP and cys-C (r = 0.421; P = 0.023), and as
would be expected, between hsTnI and eTnI (r = 0.967,
P < 0.001). Modest correlations were observed for cys-C,
MPO, and eTnI. Notably, no other significant correlations
between markers were detected.
With respect to correlations between biomarkers and

filling pressures, on Day 1 morning measurements, pul-
monary artery systolic pressure negatively correlated with
cys-C (r = -0.52, P = 0.039) and PCWP negatively corre-
lated with eTnI (r = -0.55, P = 0.049). On Day 1 evening
measurements, CVP correlated with MPO (r = 0.475, P =
0.019). There was a significant correlation observed
between sST2 and CVP on Day 2 (r = 0.73, P < 0.001) as
well as the highest sST2 in the first 48 hours and Day 1
morning CVP (r = 0.58, P = 0.009). A trend toward inverse
correlation with sST2 and SVR was present (r = -0.436,
P = 0.071). There were no significant correlations with
sST2 and PCWP or cardiac index.

Biomarkers and failure to respond to ‘tailored therapy’
Following hemodynamic and filling pressure guided ther-
apy, within 48 hours after ICU admission 12 patients
(40%) failed to achieve the pre-specified CVP goal (CVP
<8 mmHg) as per standard of care, The standard goal of
PCWP <16 mmHg was not met by 18 patients (60%) and
14 patients (47%) failed to lower SVR below 1,200 dyn-s/
cm5; such patients were thus also identified as non-
responders.
Using ROC analysis of multiple biomarkers to predict

non-response, we found that the maximal concentration
of sST2 during the first 48 hours after enrollment was
the best predictor for failure of improvement in filling
pressures as shown in Table 2, while only NT-proBNP
weakly predicted improvement in SVR and did not pre-
dict response to CVP or PCWP; other markers showed
no association with therapy response. The optimal cut-
point for sST2 concentration for the prediction of low-
ered CVP based on the ROC analysis was 171 ng/mL

(sensitivity 83%, specificity 78%), which was superior to
the median value, 129 ng/mL (83% sensitivity, 67% speci-
ficity) as shown in Table 3.
Considered dichotomously [See Additional file 1,

Figure S1], median (IQR) concentrations of sST2 were
significantly higher among CVP non-responders

Table 2 Receiver operating characteristic analysis of all
biomarkers for predicting response to pulmonary artery
catheter guided therapy.

Biomarker AUC 95% CI P

CVP non-responsea

sST2 0.82 (0.66 - 0.98) < 0.001

NT-proBNP 0.64 (0.42 - 0.85) 0.10

hsTnI 0.56 (0.34 - 0.77) 0.30

eTnI 0.51 (0.29 - 0.74) 0.45

cys-C 0.70 (0.51 - 0.90) 0.02

MPO 0.48 (0.24 - 0.72) 0.57

PCWP non-responseb

sST2 0.68 (0.45 - 0.91) 0.06

NT-proBNP 0.63 (0.40 - 0.86) 0.13

hsTnI 0.53 (0.31 - 0.74) 0.41

eTnI 0.52 (0.29 - 0.74) 0.44

cys-C 0.62 (0.37 - 0.87) 0.18

MPO 0.52 (0.31 - 0.74) 0.42

SVR non-responsec

sST2 0.59 (0.38 - 0.80) 0.19

NT-proBNP 0.69 (0.48 - 0.89) 0.04

hsTnI 0.40 (0.19 - 0.61) 0.82

eTnI 0.39 (0.17 - 0.61) 0.84

cys-C 0.45 (0.23 - 0.67) 0.67

MPO 0.39 (0.18 - 0.60) 0.85
aAUC for CVP non-response was significantly higher for sST2 as compared to
cTnI (P = 0.03), and eTnI (P = 0.02), no significant difference between AUC for
sST2 and cys-C/NT-proBNP/MPO; bNo significant difference among AUCs for
PCWP non-response; cNo significant difference among AUCs for SVR non-
response. AUC, area under the curve; CI, confidence intervals; cys-C, cystatin C;
eTnI, experimental research prototype Troponin I; hsTnI, highly sensitive
Troponin I; MPO, myeloperoxidase; NT-proBNP, amino terminal cleavage
fragment of B-type natriuretic peptide; sST2, soluble ST2.

Table 3 Operating characteristics of sST2 for predicting
response to pulmonary artery catheter guided therapy

Outcome and cut-off point Sensitivity Specificity PPV NPV

CVP non-response

129 ng/mL (median) 83% 67% 63% 86%

171 ng/mL (ROC optimal) 83% 78% 71% 88%

PCWP non-response

129 ng/mL (median) 67% 67% 75% 57%

98 ng/mL (ROC optimal) 89% 58% 76% 78%

SVR non-response

129 ng/mL (median) 57% 50% 50% 57%

105 ng/mL (ROC optimal) 71% 47% 53% 64%

CVP, central venous pressure; NPV, negative predictive value; PPV, positive
predictive value; PCWP, pulmonary capillary wedge pressure; ROC, receiver
operator characteristic; sST2, soluble ST2; SVR, systemic vascular resistance.
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compared to responders (225.3 (173.8 to 277.1) versus
104.6 (65.2 to 154.3) ng/mL; P = 0.003). Patients whose
PCWP failed to respond also trended toward higher
median sST2 concentrations (181.7 (107.5 to 226.9) ver-
sus 88.2 (63.8 - 238.8) ng/mL; P = 0.05). There was no
significant difference in median sST2 concentration
between patients who met SVR goals and SVR non-
responders (111.0 (78.2 to 217.6) versus 171.2 (94.9 to
263.7) ng/mL; P = 0.19).
In multivariate logistic regression analyses, sST2 values

within the first 48 hours of ICU admission were a strong
predictor of CVP non-response (OR = 52.4; 95% CI = 1.55
to 1,777.9, P = .03). The only other variable predictive of
CVP non-response was prevalent atrial arrhythmia (OR =
41.9; 95% CI = 1.40 to 1,249.3, P = .03). sST2 values were
not independent predictors of failed lowering of PCWP
(OR = 2.72; P = .17) or improved SVR (OR = 2.43;
P = .22).

Risk of all-cause death, LVAD placement or cardiac
transplantation
Over a follow-up period of 90 days, follow up was com-
plete in 100% of patients. There were six deaths (20%),
two LVAD placements (7%), and nine cardiac transplan-
tations (30%); the combined outcome was reached in 17
patients (57%).
Table 1 compares the baseline characteristics and bio-

marker levels of patients who experienced an event and
those who were event-free. The clinical attributes
described in Table 1 include some of the variables that
previously have been shown to be related to ICU mor-
tality as part of the SAPS II prognostic score [18,19],
such as age, blood pressure, heart rate, sodium and
blood urea nitrogen. As seen in Table 1, there was no
significant difference in SAPS II scores between those
who had an event and those who remained event-free
(21 (18 to 29) versus 23 (18 to 29); P = 0.78). While all
biomarkers tended to show numerically higher concen-
trations in those patients who suffered adverse events,
only sST2 concentrations were significantly higher
(183.1 (112.8 to 258.4) versus 86.9 (66.0 to 145.6) ng/
mL, P = 0.02; Table 1). Similarly, in ROC analyses only
sST2 had an AUC significantly different from non-dis-
crimination for the combined endpoint (Table 4; AUC =
0.76; 95% CI = 0.59 to 0.93; P = 0.001); this was super-
ior to the SAPS II score (AUC = 0.53; 95% CI = 0.31 to
0.75; P = 0.40).
As shown in Kaplan-Meier curves, the risk associated

with an sST2 ≥104 ng/mL was present immediately
from ICU admission and remained quite significant to
the horizon of follow-up (Figure 1; log-rank P = 0.01).
In univariate analyses, sST2 was the only novel bio-

marker associated with a higher risk of experiencing an
event. Adjusting further for age in a Cox proportional

hazards model, the only variables that remained inde-
pendent predictors of death, need for LVAD implanta-
tion or heart transplantation within the ensuing 90 days,
were sodium <135 mmol/L (HR = 4.60; 95% CI 1.54 to
13.79; P = 0.006) and sST2 ≥104 ng/mL in the first 48
hours of ICU admission (HR = 5.53; 95% CI 1.20 to
25.42; P = 0.03). We thus examined the additive value
of an elevated sST2 and hyponatremia for prognosis as
shown in Additional file 2, Figure S2. At the end of the
follow-up period, nearly all the patients with both hypo-
natremia and elevated sST2 had an event.

Discussion
Although biomarkers are well-established for risk pre-
diction in patients with typical HF presentations, their
use in very advanced stages of the diagnosis, such as in
hospitalized patients awaiting transplantation, is less
explored. This is not without ramifications as, at such
later stages of HF, information regarding prognosis can
significantly influence decision-making such as more
expedited LVAD placement or heart transplant. In this
study, we examined the prognostic ability and correla-
tion with hemodynamic indices of six biomarkers
reflecting diverse pathophysiologic processes in a popu-
lation of patients suffering from severe HF undergoing
PAC-directed therapy. We hypothesized that biomarkers
reflecting a broad range of pathophysiology in severe HF
might provide incremental prognostic information in
such patients, which might be theoretically leveraged for
clinical decision making.
Consistent with prior studies, we found most biomar-

kers examined did not generally correlate with filling
pressures [20]. An exception was sST2, which strongly
correlated with CVP. While nearly all markers examined
were less useful for predicting failure of ‘tailored’ ther-
apy or events such as death or need for mechanical sup-
port or transplantation, concentrations of sST2 (held to
reflect myocardial fibrosis and remodeling) within the
first 48 hours following ICU admission appeared to

Table 4 Receiver operator characteristic curve analysis of
all biomarkers for predicting events (death/LVAD
implantation/transplant).

Biomarker AUC 95% CI P

sST2 0.76 (0.59 - 0.93) 0.001

NT-proBNP 0.53 (0.32 - 0.74) 0.38

hsTnI 0.61 (0.40 - 0.81) 0.15

eTnI 0.64 (0.44 - 0.84) 0.08

cys-C 0.63 (0.42 - 0.83) 0.11

MPO 0.63 (0.43 - 0.83) 0.10

AUC, area under the curve; CI, confidence intervals; cys-C, cystatin C; eTnI,
experimental research prototype Troponin I; hsTnI, highly sensitive Troponin I;
MPO, myeloperoxidase; NT-proBNP, amino terminal cleavage fragment of B-
type natriuretic peptide; sST2, soluble ST2.
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predict both failure of PAC-based HF treatment as well
as death or need for LVAD placement or
transplantation.
The function of sST2 as a biomarker of mechanical

stress was first demonstrated in vitro after up-regulation
of its gene transcript was noted in conditions of myo-
cardial strain [21] and has further evolved with the iden-
tification of its ligand, IL-33, which is also induced by
myocardial strain. IL-33/ST2 signaling has been shown
to be cardioprotective in vivo, with IL-33 acting as an
anti-fibrotic, anti-apoptotic, and anti-hypertrophic para-
crine hormone. IL-33/ST2 signal activation is thought to
occur in response to cardiac strain, with sST2 as a
‘decoy’ receptor for IL-33; in the context of abnormal
sST2 release, the protective effects of IL-33 are damped,
leading to a risk for adverse cardiac remodeling and
death [22-24]. sST2 has emerged as a powerful prognos-
tic biomarker in various HF populations [9-11,25]; we
now specifically extend the prognostic value of sST2 in
an important population, namely those admitted to the
ICU for advanced HF therapy. This is the first such spe-
cific study of sST2 in this context. Given the high risk
and extensive cost-outlays associated with patients at
this stage of disease, one could envision measurement of
sST2 prior to the initiation of PAC guided therapy to

aid a clinician’s decision-making; a markedly elevated
value might trigger more direct referral to mechanical
support at a time prior to gross clinical instability.
Noteworthy of mention, our patient population

demonstrated elevation of sST2 concentrations consid-
erably higher than in previously reported populations
[9-11,25], reflecting the unique nature of the study
cohort. In addition, our subjects had considerable bio-
chemical disarray as evidenced by the gross abnormal-
ities of the other markers studied; this presumably
diluted the ability of other biomarkers to recognize risk
for failure of PAC guided therapy or 90 day complica-
tions. Interestingly, although not originally in the list of
biomarkers evaluated, hyponatremia remained a predic-
tor of adverse outcome even after adjustment, and when
combined with sST2 identified patients at greatest risk
for adverse outcomes. Hyponatremia has been well
described as an independent predictor of mortality in
HF [26,27], including in study populations of advanced
HF similar to ours [28]. The rationale for expanding the
analysis to consider hyponatremia with sST2 was based
on the fact that HF patients with low sodium have more
severe upregulation of the renin-angiotensin-aldosterone
system (RAAS) [29,30], and angiotensin II (AngII) pro-
duced during RAAS activation has recently been studied

Figure 1 Event free survival at 90 days according to sST levels. Kaplan-Meier plot illustrates the incidence of death, LVAD, or heart
transplantation among patients admitted to an intensive care unit for pulmonary artery catheter guided therapy according to sST2 levels. P =
.01 by log rank test. LVAD, left ventricular assist device; sST2, soluble ST2.
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for its role in mediating cardiac fibrosis. Acting in an
autocrine and paracrine fashion, AngII activates signal-
ing pathways including mitogen-activated protein
kinases (MAPK), reactive oxygen species (ROS), and
nuclear factor �B (NF-�B), all of which mediate cardiac
hypertrophy, inflammation and fibrosis [31,32]. Sanada
et al. demonstrated that IL-33 blocks NF-�B activation
by AngII and co-treatment with sST2 reversed the inhi-
bition of NF-�B, allowing unchecked development of
hypertrophy [22]. Furthermore, IL-33 also suppresses
both AngII-induced MAPK pathways and ROS genera-
tion [22]. The entwined relationship of ST2 signaling
and AngII in cardiac hypertrophy/fibrosis coincides with
our results demonstrating enhanced prognostic value of
hyponatremia and elevated sST2 levels.
With each new prognostic biomarker developed, the

relevant challenge from a clinical perspective is to eluci-
date whether the information provided expands on what
is already known about the patient, and whether such
data can be used to mitigate a patient’s risk. Notably,
similar with at least one other study in patients with
severe HF [33], the SAPS II score did not provide sub-
stantial prognostic data, and was considerably inferior to
sST2 for this purpose. Given the more widespread avail-
ability of biomarkers and relative ease of interpretation
compared to more complex scoring systems, one could
envision an approach of biomarker-guided or biomar-
ker-supported therapy decision-making for advanced HF
patients. Such decision-making has gained popularity in
other disciplines but has yet to greatly gain momentum
in cardiovascular medicine. Given its rising rates of
morbidity and mortality as well as cost, HF is a promis-
ing cardiovascular diagnosis to explore this approach. A
paucity of data exists for biomarkers specific to the
most advanced stage HF patients (where treatment deci-
sion-making carries significant importance) but our
results set the stage for a larger analysis similar in
design.
This study has several important limitations. First, this

is a small, single center study, which increases the risk
of a Type II error; our hypothesis-generating study has
set the stage for larger ICU based cohort studies, such
as those that we are currently executing. Additionally,
while the initial reason and powering for execution of
this study was to evaluate the relationship among oxy-
gen saturations drawn from the periphery, right atrium
and pulmonary artery in patients with HF, we explored
a secondary outcome measure (correlations to PAC
data), while also examining cardiovascular event rates.
The post-hoc decision to change the outcome measures
is an additional limitation of this study, rendering our
results more exploratory. Referral bias is another poten-
tial limitation of this study as all patients were enrolled
after an attending cardiologist had determined them to

require PAC-guided therapy. This may be reflected in
our outcome rate, which was higher than in previously
described populations of similar patients undergoing
PAC guided therapy [3,17]. The highly specialized nat-
ure of our study population is worth noting. Finally, our
study results may not be generalizable as our study
population was predominantly male, which may not
accurately reflect an ICU population.

Conclusions
In summary, our data establishes heretofore undefined
hemodynamic and outcome associations with sST2 con-
centrations in an understudied population and extends
the current knowledge base regarding sST2 and cardio-
vascular disease. More studies in larger cohorts of such
patients should seek to confirm these findings and
advance the potential of future clinical management that
is ‘tailored’ to the individual patient.

Key messages
• Plasma concentrations of the interleukin receptor
family member sST2 are loosely correlated with fill-
ing pressures and hemodynamics in patients with
severe HF. The strongest correlations appear to be
with right-heart filling pressures.
• An elevated concentration of sST2 in patients with
Stage D, class IV HF undergoing PAC-guided ther-
apy was associated with inability to achieve tailored
filling pressure goals.
• Among patients admitted for hemodynamic tailor-
ing, an elevated sST2 level predicted death, LVAD
implantation, or heart transplantation at 90 days.
• Future studies investigating the role of sST2 in
guiding therapy in Stage D, class IV patients are
indicated.

Additional material

Additional file 1: Figure S1. Concentrations of sST2 and (A) CVP
non-response, (B) PCWP non-response, and (C) SVR non-response.
The pdf file contains plots comparing the median sST2 and interquartile
ranges for CVP responders and CVP non-responders in panel A, PCWP
responders and PCWP non-responders in panel B, and SVR responders
and SVR non-responders in panel C.

Additional file 2: Figure S2. Rates of events at 90 days as a function
of hyponatremia and elevated sST2. The pdf file contains a chart
depicting the percentage of subjects who experienced an event (death,
LVAD implantation, or heart transplantation) at 90 days as a function of
hyponatremia and/or elevated sST2.
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