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and multiscale entropy in patients with systemic
inflammatory response syndrome, sepsis, and
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Abstract

Background: Even though temperature is a continuous quantitative variable, its measurement has been
considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic
techniques have been proposed for the association between different properties of the temperature curve with
severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body
temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation
during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature
signals, in a cohort of mixed critically ill patients.

Methods: Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS,
group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were
studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the
signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs
on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific
frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and
a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing
diagnostic accuracy of different wavelet features among the three classes of patients.

Results: Statistically significant differences were found in wavelet entropy between patients with SIRS and groups
2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster
analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus.
LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the
two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating
reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation.

Conclusions: We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory
dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus
noninfectious conditions, probably associated with severity of illness.

* Correspondence: vapapa@med.duth.gr
† Contributed equally
1Alexandroupolis University Hospital, Intensive Care Unit, Democritus
University of Thrace, Dragana 68100, Greece
Full list of author information is available at the end of the article

Papaioannou et al. Critical Care 2012, 16:R51
http://ccforum.com/content/16/2/R51

© 2012 Papaioannou et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:vapapa@med.duth.gr
http://creativecommons.org/licenses/by/2.0


Introduction
Fever is a common problem in critically ill patients.
While infections are the commonest cause of fever,
other noninfectious inflammatory conditions may aug-
ment cytokine production with a subsequent febrile or
hypothermic response. Investigation of fever involves
numerous diagnostic tests that must be performed to
differentiate infectious from noninfectious causes and to
determine the site of possible infection. Moreover, the
presence of fever can significantly increase the cost of
treatment in the Intensive Care Unit (ICU) [1,2].
Different biomarkers have been studied for their accu-

racy in discriminating patients with infectious and non-
infectious acute inflammatory states. Many studies have
confirmed that procalcitonin (PCT), a 116-amino acid
peptide, is induced in the plasma of patients with severe
systemic bacterial infections and during severe sepsis
and septic shock [3]. However, whereas PCT has been
shown to discriminate different causes of fever with an
accuracy that exceeds other infection markers (for
example, C-reactive protein or leukocyte count), recent
systemic overviews and meta-analyses have obtained
contradictory results regarding the reliability of PCT in
diagnosing sepsis or bacteremia [3-5]. As suggested, the
majority of these studies are biased by choice of PCT
assay used, severity of illness, focus, and cause of infec-
tion, and particularly, by the lack of a reliable gold stan-
dard that separates sepsis from noninfectious systemic
inflammatory response syndrome (SIRS) [6].
Even though temperature is a continuous quantitative

variable, its measurement in the clinical setting has been
considered a snapshot of a process, indicating whether a
patient is febrile or afebrile (qualitative dichotomous
value). However, the complexity of the interactions
between different cytokines with pyrogenic and anti-
pyrogenic properties may continuously alter the height
and duration of a febrile response. Recently, other diag-
nostic techniques have been proposed for the associa-
tion between different properties of the temperature
curve with severity of illness in the ICU setting, based
on complexity analysis of continuously monitored body
temperature [7,8].
We are not aware of any study in the literature inves-

tigating a possible association between temperature
variability and complexity with different causes and
severity of systemic inflammation. Discrimination of
inflammatory responses through different patterns of
change of temperature-curve complexity would add sig-
nificant value to such analysis, because various biomar-
kers have been found to differ in terms of diagnostic
reliability in the diagnosis of sepsis [3-5].
In this observational study, we tried to investigate

changes of temperature variability and complexity in a

mixed population of critically ill patients, during the
first 24 hours of an inflammatory state (SIRS) with a
suspected infection. In addition, we tried to evaluate
through statistical models whether these domains of
measurements correlate with causes and severity of sys-
temic inflammation. We supposed that because physio-
logic rhythms fluctuate over time because of continual
interaction between the environment and the internal
control mechanisms [9,10], different causes of systemic
inflammatory response might alter the dynamic behavior
of body temperature.

Materials and methods
Setting and studying population
This study was performed in a mixed eight-bed ICU in the
University hospital of Alexandroupolis, Greece, after
approval by the local Scientific and Ethics Committee (Uni-
versity Hospital of Alexandroupolis, Institutional Ethics
Committee) and after obtaining informed consent from the
patient’s next of kin. In total, 22 consecutive patients
admitted to the ICU from January to September 2011, with
a mean Acute Physiology and Chronic Health Evaluation
(APACHE) II score on admission 17.4 (± 4.5), were
included in the study. The 14 men and eight women had a
mean age of 60.86 ± 5.35 years. Every episode of SIRS (an
inflammatory state including ≥ 2 of the following: tempera-
ture, ≥ 38°C or ≤ 36°C; heart rate, ≥ 90 beats/min; respira-
tory rate, ≥ 20 breaths/min or PaCO2 ≤ 32 mm Hg; and
white blood cell count, ≥ 12.000/mm3 or ≤ 6.000/mm3 or >
10% immature neutrophils) [11] and suspected infection,
such as bacteremia or ventilator-associated pneumonia
(VAP) during the patients’ stay in the ICU was considered
eligible for further analysis (54 patients; Figure 1). Blood-
stream infections (BSIs) and VAP were defined according
to published guidelines [2]. Patients were excluded from the
study (32 patients, Figure 1) if (a) they had neurologic dis-
eases (brain trauma or stroke), due to possible direct or
indirect damage of the hypothalamus, probably related to
defective thermoregulation [12]; (b) if they had toxic insults,
such as neuroleptic malignant syndrome (NMS) associated
with administration of antidepressant agents or metabolic
crisis, such as thyroid storm; and (3) if they were awake
during a suspected infection, because sedation has been
found to alter variability measures of different physiologic
signals [13]. For that reason, we did not want to study a
mixed population of both sedated and awake patients. Cate-
gories 1 and 2 are considered to be established noninfec-
tious causes of SIRS that could bias our methods because
we were interested only in suspected infectious states. We
decided to exclude patients with known metabolic/neurolo-
gic causes of admission to the ICU at this stage, which
could alter, with different mechanisms, normal thermoregu-
lation. In addition, we decided to exclude patients older
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than 70 and/or younger than 40 years because of the nega-
tive impact of extreme age on complex dynamics of ther-
moregulatory oscillations [14]. The studied population, 48
to 72 hours after confirming or rejecting the diagnosis of
infection based on microbiologic data, was retrospectively
divided into three groups: group 1 included patients with
SIRS (without proven infection; n = 5); group 2, those with
sepsis (SIRS + infection; n = 10); and group 3, patients in
whom severe sepsis (one or more signs of organ failure +
infection) and septic shock (hypotension, meaning either
systolic blood pressure < 90 mm Hg or mean arterial pres-
sure < 70 mm Hg, despite adequate volume resuscitation; n
= 7) developed during the period of signal extraction [11].
In addition, a Sequential Organ Failure Assessment (SOFA)
score of severity of illness was calculated during the day of
temperature recordings, in all patients.

Temperature measurements
Continuous temperature monitoring was performed
during the first 24 hours of the patients’ inflammatory
response, with a thermistor sensor (Datalogger Spec-
trum 1000; Veriteq Instruments, Richmond, BC,
Canada), attached to the right hypochondrium in all
subjects, as was previously described [7,8]. This device is
capable of sampling temperature at a rate of 1 sample

per 10 seconds (0.1-Hz sampling frequency) with a reso-
lution of 0.05°C. Data were collected daily by using the
software viewLink and, through Bluetooth technology,
were downloaded in separate files for later analysis, to
an HP Pavilion 6181, 2 GHz PC, by someone blinded to
patients’ clinical status.

Time series analysis
Signal preprocessing
Artifact areas were present in the signals, potentially
because of contact and other sensing. These artifact seg-
ments were manually annotated and replaced by a linear
segment (produced by linear interpolation) connecting the
end points of the segment. Then the signal average value
was subtracted, so that features were not biased by the
temperature mean values, leading to the signal sign m-.
Further preprocessing was considered (that is, detrending)
to isolate the long-term trends in the signal (Figure 2a and
2b). Both versions of the signal (that is, after subtraction of
mean value, and the signal sign_mdetr, after also estimat-
ing and removing linear trend) were studied.
Time-scale complexity: wavelet transformation of
temperature signals
The temperature signals under consideration are not
periodic (in the time frames of interest) or completely

Patients 
assessed for 

eligibility 
(SIRS & suspected 
infection, N=54) 

 
Excluded patients (n=32) 

Reason for exclusion, n (%) 
 1. Brain trauma injury, 8 (25 %) 

2. Stroke, 3 (9 %) 
3. Age > 70 years, 4 (12 %) 
4. Neuroleptic malignant 

syndrome, 2 (6 %) 
5. Awake patients, 15 (48 %) 

 
  

Included patients 
 (temperature continuous 

recordings for 24 hours, N =22) 

Infection 
(Microbiological 

diagnosis within 48-
72 hours post-

recruitment, N=17, 
77%) 

SIRS 
(Group 1, 
N=5, 23%) 

Septic shock 
(Development of hypotension 

during the 24 hours of 
temperature recordings, Group 3, 

N=7, 32%)) 

SIRS + infection 
(Sepsis, Group 2, N=10, 45% )) 

Figure 1 Flowchart of patients’ assessment for eligibility in the study. Inclusion and exclusion criteria of patients enrolled in the study. SIRS,
systemic inflammatory response syndrome.
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random. They seem not to be stationary, in the sense
that they contain transients and localized components,
whereas their statistics change over time. Time-scale
analysis was considered as a method to decompose the
signal into a set of subsignals regarded at different
scales. Each subsignal contains localized information
about the temperature changes in the specific time
scale. It is thus possible to examine whether dominant
scales are present (also corresponding to frequency con-
tent), and what is the dynamic and the patterns of the
temperature deviations at different scales (for example,
in terms of complexity at different scales).
A wavelet transform is a mathematical tool that can

be used to process signals and provide salient informa-
tion about both the time and frequency content of a
transient signal, via the use of a waveform pattern
(mother wavelet) of limited duration. Wavelet analysis
consists of taking a waveform with an average value of
zero, such as the Morlet or Meyer wavelet, and moving
it through the extent of the signal [15]. As the waveform
is stretched out and scaled, coefficients are produced as
a function of both scale and position, representing how
well the waveform matches the signal. A wavelet trans-
form can be implemented as discrete wavelets transform
(DWT) or continuous wavelets transform (CWT).
DWTs use a specific subset of all scale and translation
values; whereas CWTs operate over every possible scale
and translation values. A wavelet transform has variable
time-frequency resolution (that is, good time but poor
frequency resolution at high frequencies, and good fre-
quency but poor time resolution at low frequencies)
[15,16].

We applied the Meyer mother wavelet for both CWT
and DWT. For DWT, based on sampling frequency,
nine scales were used, corresponding to the frequency
bands depicted in Table 1. Based on previous studies,
we assumed that different frequency bands are related
to physiologic phenomena, such as (a) neurogenic inputs
in association with scale 1 (low frequencies); (b) meta-
bolic inputs related to scales 2 to 3 (very-low frequen-
cies); and (c) unknown influences on ultradian scales,
higher than 4 (ultra-low frequencies) [17]. Furthermore,
we considered that wavelet features derived from tem-
perature analysis might also reflect microcirculatory
fluctuations, related to different local thermoregulatory
mechanisms [18,19].
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Figure 2 Preprocessing of temperature signals. Raw (a) and detrended (b) temperature curve versus time of recording (minutes) in a patient
with ventilator-associated pneumonia and septic shock. The signal average value is subtracted, so that features are not biased by the
temperature mean values (1a). Other normalization procedures were also considered, to isolate the long-term trends in the signal (by use of
detrend, 1b).

Table 1 Scaling of temperature signals with wavelet
transform

Scale Frequency bands
(Hz)

Periods of phenomena (minutes)

Min Max Min Max

1 0.025 0.05 0.333333 0.666667

2 0.0125 0.025 0.666667 1.333333

3 0.00625 0.0125 1.333333 2.666667

4 0.003125 0.00625 2.666667 5.333333

5 0.001563 0.003125 5.333333 10.666667

6 0.000781 0.001563 10.666667 21.333333

7 0.000391 0.000781 21.333333 42.666667

8 0.000195 0.000391 42.666667 85.333333

9 < 0.0001 0.000195 85.333333 170.666667

Wavelet scales corresponding to different frequency bands of the recording
temperature signals, extracted with a sampling frequency of 0.1 Hz, for 24
hours.
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For the detail signal of each scale of DWT (that is, the
wavelet coefficients in this scale), two features were calcu-
lated, the wavelet energy-reflecting variability of the signal
and the wavelet entropy, corresponding to the information
content within each scale. The wavelet energy (WE) per
scale is calculated as follows (Equation 1):

WE(si) =
Li∑
j=1

w2(si, j)/Li

where si is the scale, si = 1, 2, ...12. Li is the total num-
ber of wavelet coefficients in scale si, and w(si,j) is the jth

wavelet coefficient in scale si.
The wavelet entropy WEn is defined based on the

Shannon entropy (Equation 2):

WEn(si) = −
Li∑
j=1

w2
n (si, j) log(w2

n(si, j))

where the place of probability distributions is taken by
normalized squared wavelet coefficients, equivalent to a
power-spectrum distribution in a spectral analysis
(Equation 3):

wn(si,j) =
∣∣w(si, j)∣∣2

/
Li∑
j=1

w2(si, j)

Normalization here is performed per scale (that is, the
sum of wn per scale is equal to 1). In this manner, after
calculating energy and entropy per scale, 18 wavelet fea-
tures (two features × nine scales) were calculated.
A similar procedure was followed in the CWT, and

wavelet energy and entropy were calculated for the neu-
rogenic (CWTen1 and CWTentro1, respectively), meta-
bolic (CWTen2 and CWTentro2), lower metabolic/
ultradian band (CWTen3 and CWTentro3) ultradian
band (CWTen4 and CWTentro4), as well as for the
whole time-scale map (CWTen and CWTentro), leading
to 10 CWT features.
Data analysis using wavelets was performed in Matlab

(R2006b; The Mathworks, Natick, MA, USA).
Complexity features: multiscale entropy (MSE)
MSE was recently introduced for quantifying heart-rate
complexity [20]. In brief, for a given time series, multi-
ple “coarse-graining” time series are constructed by
averaging the data points within nonoverlapping win-
dows of increasing length τ, where τ represents the scale
factor. Subsequently, sample entropy (SampEn) that
represents the negative natural logarithm of the condi-
tional probability that two sequences similar for m
points remain similar at the next point with a tolerance
r [21] is calculated for each time series and then plotted
against the scale factor, giving rise to the MSE curve.

The sum of SampEn overall scaling factors represents
the MSE (sumEn) of a signal. Regular signals are
expected to have low sumEn, whereas complex ones
take on higher sumEn values. This technique is consid-
ered more accurate than approximate entropy (ApEn),
which was introduced by Pincus, because of the depen-
dence of ApEn on the record length [22]. For MSE ana-
lysis, different values of parameters (m, r, N) are used
for calculations. N is the length of the time series. The
parameter r, the tolerance for accepting matches, is set
between 15% and 25% of the standard deviation (SD) of
the time series, after normalization (SD = 1). The para-
meter m (embedding dimension) is the length of
sequences to be compared, and its values vary between
1 and 2 for data length ranging from 100 to 5,000 data
points [21,22].
In our analysis, we computed temperature MSE by

using 36 scales and after assigning the values of 2 for m
and 0.15 for r, by using specific functions in Matlab. For
completeness, the basic Sample entropy (without scal-
ing) was also computed.

Statistical analysis
The aims of this analysis were fourfold:
1. Present descriptive statistics of difference among the

groups, revealing the general properties of the tempera-
ture signals.
2. Investigate which feature groups form concrete

unsupervised clusters, and associate these clusters with
the existing medical knowledge.
3. Select features that best classify in a supervised

manner, pairwise, SIRS from sepsis or septic shock.
4. Associate temperature features with the clinical pic-

ture and severity of the patient.
The methods followed are described in more detail

later.
No-parametric statistical testing
We applied the Lilliefors test as an adaptation of Kol-
mogorov-Smirnov test for assessing the null hypothesis
that data come from a normally distributed population.
None formed the studied variables, except for age, and
temperature was found to follow a normal distribution.
In this respect, one-way analysis of variance (ANOVA)
was used for estimating statistical differences between
the three groups of patients for age and temperature.
Nonparametric tests (Wilcoxon rank-sum test) were

performed in a pairwise manner for statistically signifi-
cant differences between (a) SIRS-sepsis, (b) SIRS-septic
shock, and (c) sepsis-septic shock for different features
derived from variability analysis of temperature signals
and for SOFA score. Rank-sum null hypothesis is that
data in the two vectors under investigation are indepen-
dent samples from identical continuous distributions
with equal medians.
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Furthermore, considering the three groups involved,
the Kruskal-Wallis nonparametric test (KW) was applied
to assess the significance of the differences in the calcu-
lated features among the three groups. The function
compares the medians of the samples, testing the null
hypothesis that all samples are drawn from the same
population (or equivalently, from different populations
with the same distribution), as a nonparametric one-way
ANOVA and an extension of the Wilcoxon rank-sum
test to more than two groups.
Whereas the KW was used to reject the global null

hypothesis (that is, whether at least one sample median
is significantly different from the others), a further mul-
tiple comparison was also used to determine which
groups differ significantly in a pairwise manner, with
Bonferroni correction for multiple groups.

Unsupervised clustering
Because we did not know from the beginning in which
class (SIRS, sepsis, or septic shock) our patients
belonged during data extraction and analysis, we
adopted unsupervised learning techniques for cluster
generation, based on pairwise distance (dissimilarity) of
different wavelet features. In this case, no training set
containing known classifications can be evaluated in a
test set of different features. So, we calculated pairwise
distance contours by using the standard euclidean dis-
tance (Equation 4):

d(p,q) = d(q,p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + · · · + (qn − pn)

2 =

√√√√ n∑
i=1

(qi − pi)
2.

where d (p,q) is the distance between observations
(wavelet features) p and q, and n is the number of ele-
ments per observation. This calculation resulted in the
distance matrix MDis, which was then visualized with
color coding, reflecting the distances and presenting the
natural organization of data.
In parallel with the visual inspection, k-means cluster-

ing was performed, assigning all the data to two groups,
and the unsupervised clustering capability, in terms of
intraclass and interclass distance, as well as the relation
of these clusters with the a posteriori knowledge about
the three groups, was quantitatively assessed [23].
We decided to study wavelet entropy and energy per

different scales bands for generation of clusters, based
on previously published data that demonstrated signifi-
cant correlations between particular spectral ranges and
autonomic or metabolic inputs [17].
Feature selection and classification
Although the statistical tests describe the differences
among groups and produce features that can potentially
lead to the classification of the groups under considera-
tion, it is often the case that multivariate approaches,

taking into account combinations and interactions of
features, rather than univariate approaches, lead to bet-
ter results.
In this respect, after confirmation of microbiologic

diagnosis and besides statistical testing, a heuristic wrap-
per method was used to highlight the most informative
features, in terms of pairwise classification of tempera-
ture signals belonging to the three groups (SIRS, sepsis,
and septic shock). The method is based on the repetitive
generation of random-feature subsets (here in combina-
tions of four features) from the pool of available features
and the evaluation of their classification capacity, in
terms of binary linear classification (that is, SIRS versus
sepsis, SIRS versus septic shock, sepsis versus septic
shock). Successful sets were those reaching classification
accuracy higher than a threshold (80%). To address the
dataset imbalance present here, the average of sensitivity
and specificity was used as a criterion, instead of absolute
accuracy. The significance of each feature was measured
by an index counting the frequency of appearance of the
particular feature in a successful subset. In this respect,
the features with the highest significance were selected to
form the features sets denoted as randset for each one of
the three classifiers. The method was implemented as a
variation of the rand features method available in Matlab.
Subsequently, the selected features sets were used in

linear classification with linear discriminant analysis
(LDA) [24], and the accuracy was assessed in a leave-
one-out cross-validation manner, in which multiple runs
took place, and in each run, one sample was presented
as the test set, and the remaining samples, as the train-
ing set. Because of the small number of data, the results
were only indicative of the classification capacity. It
must be noted that a multiclass scheme was not consid-
ered at this step, as the main focus was the distinction
of infection from SIRS, rather than the difference
between sepsis and septic shock.
Relation with severity and clinical measures
The Spearman rank correlation coefficient (r) was used
as a nonparametric measure of statistical dependence
between different features and a SOFA score of severity
of illness. Data are presented as mean ± SD for normally
distributed variables or median (25th to 75th percentiles)
for measurements without normal distribution. Values of
P < 0.05 were considered to be significant. Statistical ana-
lysis was performed in Matlab (R2006b; the Mathworks).

Results
Clinical information of all studied patients is demon-
strated in Table 2. Mean temperature did not differ sig-
nificantly between the three groups (38.26 ± 0.26 for
group 1, 38.17 ± 1.43 for group 2, and 38.67 ± 0.39 for
group 3). However, SOFA scores were significantly
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different between subjects proved to have SIRS or sepsis
versus septic shock [(10 (9 to 10), group 1; and 12
(10.25 to 12), group 2; versus 17 (16.5 to 18), group 3; P
< 0.001)]. Groups 1 and 2 did not differ in terms of
SOFA (P = 0.09), whereas age also was found similar
among the three classes of patients. All recruited sub-
jects were admitted to the ICU at least 24 hours before
development of a suspected infection, except for three
patients from group 2 (7, 20, and 21), who were imme-
diately included in the study after being transferred to
the ICU from a general ward. Patients from the SIRS
group and two patients with sepsis (7,8) were not receiv-
ing antimicrobial treatment before developing a systemic
inflammatory state. However, the whole studied popula-
tion was prescribed antibiotics, during the period of
temperature recordings, because of a suspected infec-
tion. Patients from group 1 and subjects 7 and 8 from
group 2 received a combination of b-lactams (carbape-
nems) and aminoglycosides, whereas the rest from sepsis
group and the whole group 3 switched to a new combi-
nation of carbapenems, quinolones, and anti-staphylo-
coccus agents. None of our patients received

antimycotics during the study period. In addition, all
patients in whom severe sepsis and septic shock devel-
oped (group 3) received 0.04 to 0.06 μg/Kg/min of vaso-
pressors (noradrenalin) for restoration of adequate
blood pressure, according to published guidelines [25].
Moreover, in all septic shock patients and in five sub-
jects from group 2 hyperlactatemia (> 1 mM) developed,
whereas all patients with pneumonia exhibited arterial
hypoxemia (PaO2/FiO2 < 300) [11]. Low-dose hydrocor-
tisone was not considered necessary at that time.
The statistically significant features, in terms of a non-

parametric rank-sum test, when considering the sign_m
and the sign_mdetr temperature signals, are depicted in
Table 3, and differences between all patient groups in
terms of the KW test are shown in Table 4.
Patients with SIRS exhibited increased wavelet entropy

(complexity) in all scales and especially in the ultradian
ranges, reflected by wavelet entropy values in scales 3 to
8 of DWT, compared with subjects with sepsis and sep-
tic shock, reaching statistical significance between
groups 1 and 3. Regarding CWT, the total wavelet
entropy exhibited statistical significance among all
groups, whereas the entropy in lower metabolic and
ultradian scales showed a decrease with sepsis, and sta-
tistically significant differences between groups 1 and 3,
in accordance with the respective DWT features. These
differences were more evident in the analysis of sign_-
mdetr (that is, in the detrended signal). Multiscale
entropy (sumEn) and Sample Entropy of the whole sig-
nal were decreased mainly in septic-shock patients.
In the KW test, it seems that detrending (sign_mdetr sig-

nal) increases the number of features with statistically sig-
nificant differences between SIRS and sepsis, whereas
these differences are potentially masked in the signal when
only the mean value is removed (sign_m), because of the
overall signal trend, or because of the boundary effects.
The multiple comparisons with Bonferonni correction

for the raw signal (sign_m) showed that wavelet entropy
in the ultradian bands was more increased in SIRS than
in sepsis and reached statistical significance in septic
shock (Figure 3). This is more obvious and is observed
in more features, including CWT features, for the
detrended signal (sign_mdetr) (Figure 4).
Figure 5 (a and b) demonstrates the clustering of the

whole patient population according to the pairwise
euclidean distance of metabolic (WEn (s2 and 3)) and
ultradian entropy (WEn (s5 and 6), illustrated in a dis-
similarity matrix, with deep blue denoting small distance
(that is, similarity), and deep red denoting big distance
(that is, dissimilarity). It seems that patients with sepsis
and septic shock exhibited similar patterns of complex-
ity in these scales (their distance forms in deep blue
areas in the figure), whereas subjects with SIRS form a
rather distinct area of similarity, and in most cases, the

Table 2 Demographic and clinical data of the whole
patient population

Case Diagnosis T (mean) T (SD) SOFA

1 Intestinal ischemia-sepsis 36.27 0.26 11

2 Bacteremia-sepsis 37.55 0.21 9

3 VAP-sepsis 36.47 0.13 12

4 VAP-septic shock 37.17 0.27 16

5 VAP-sepsis 40.56 0.05 10

6 VAP-septic shock 38.25 0.28 18

7 Urosepsis 39.06 0.19 12

8 Hepatic cirrhosis-peritonitis 38.38 0.24 12

9 Polytrauma-SIRS 37.63 0.13 9

10 Pancreatitis-septic shock 38.48 0.18 17

11 Pancreatitis-sepsis 39.46 0.22 13

12 Colectomy-SISRS 38.11 0.38 10

13 Intestinal perforation-septic shock 38.58 0.3 17

14 VAP-septic shock 39.07 0.26 18

15 Colectomy-septic shock 39.22 0.19 13

16 Hepatectomy-sepsis 38.21 0.72 12

17 Abdominal surgery-SIRS 38.63 0.1 8

18 Polytrauma-SIRS 38.78 0.03 12

19 Abdominal surgery-SIRS 38.63 0.1 10

20 Bacteremia-sepsis 39.33 0.17 10

21 Urosepsis 37.23 0.31 12

22 Intestinal ischemia-septic shock 38.87 0.68 18

The 22 patients are presented along with their diagnosis proven within 48 to
72 hours after recruitment in the study, mean value and standard deviation of
24-hour-recording temperature signals, and mean SOFA score of severity of
illness during the same day of data extraction. T, temperature; SD, standard
deviation; SOFA, sequential organ failure assessment score, during the day of
temperature recording; SIRS, systemic inflammatory response syndrome; VAP,
ventilator-associated pneumonia.
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distances between cases belonging to SIRS and sepsis
are higher.
The outcome of the visual inspection was further rein-

forced by the quantitative clustering results depicted in
Table 5, for the sign_mdetr temperature signal. The
quantitative clustering measures suggest that the most
concrete clusters are formed with the DWT entropies of
the ultradian band, as well as with the CWT entropies.
These clusters have also a direct correspondence with
the SIRS or sepsis/shock classes. Conversely, clusters
based on temperature mean value and standard devia-
tion, or on wavelet energies are neither well formed, nor

do they correspond to the groups in focus. Clusters
formed by sample entropy and sumEn seem concrete
but do not correspond well to the three groups investi-
gated in this work.
Furthermore, weak but statistically significant anticor-

relations were observed between SOFA score and WEn
(6), WEn (8), sumEn, and CWT energy (r = -0.461,
-0.605, -0.499, and -0.564; P < 0.05 for all comparisons,
respectively) in the whole group of patients for sign_-
mdetr, whereas for sign_m, the most significant anticor-
relations were found between WEn(s8), sumEn, and
SOFA (r = -0.605 and -0.563, respectively; P < 0.05).
These results imply that high wavelet entropy in ultra-
low frequencies and multiscale entropy might be related
with a less critical case.
Table 6 depicts the outcome of the feature selection

and linear classification. The different randset schemes
of selected features with the best classification accuracy
between patients with SIRS versus sepsis (or septic
shock) was found to include DWT wavelet entropy
(WEn) and energy (WE) at scales 5, 6, and 8 (ultradian
frequencies) or CWT wavelet entropy in ultradian fre-
quencies (CWTentro4), succeeding in all cases with
more than 80% accuracy, in a leave-one-out cross-vali-
dation manner.
Figure 6 (a and b) depicts two examples of CWT from

a patient with pneumonia and sepsis and from someone
with septic shock and pancreatitis, respectively.

Discussion
In our study, complexity metrics within low-, very-low-,
and ultra-low-frequency bands were proven to discriminate

Table 4 Differences between the three groups of patients
with respect to the nonparametric Kruskal-Wallis (KW)
test and analysis of multiple groups

Features P values

Sign_m

WEn(s4) 0.0591 (marginally)

WEn(s8) 0.0242

Sign_mdetr

sumEn 0.0314

WEn(s4) 0.0535

WEn(s5) 0.065 (marginally)

WEn(s6) 0.0592 (marginally)

WEn(s8) 0.0242

CWTentro 0.0446

CWTentro 3 (metabolic) 0.0479

The table shows, for sign_m and sign_mdetr signal, the statistically significant
differences for the three groups, according to the KW test. Wen, wavelet
entropy; CWTentro, entropy of the whole signal transformed with continuous
wavelet transformation; sumEn, multiscale entropy.

Table 3 Distribution of wavelet features in the three groups of patients

Wavelet Group 1 Group 2 Group 3 1 vs 2 1 vs 3 2 vs 3

Features (SIRS) n = 5 (sepsis)
n = 10

(septic shock) n = 7 P P P

sign_m, raw data with mean value subtracted

WEn(s4) 0.226 (0.19-0.31) 0.159 (0.12-0.21) 0.105 (0.08-0.15) 0.047

WEn(s5) 0.284 (0.23-0.35) 0.195 (0.12-0.23) 0.144 (0.09-0.16) 0.047

WEn(s8) 0.485 (0.45-0.53) 0.479 (0.40-0.50) 0.391 (0.36-0.42) 0.010 0.033

sign_mdetr, raw data with mean value subtracted and mean trend removed

CWTentro 0.040 (0.03-0.05) 0.018 (0.01-0.02) 0.012 (0.011-0.014) 0.04 0.0480

CWTentro3 0.035 (0.03-0.04) 0.014 (0.009-0.019) 0.009 (0.007-0.011) 0.0480

CWTentro4 0.029 (0.02-0.03) 0.010 (0.006-0.011) 0.007 (0.006-0.011) 0.0480

WEn(s4) 0.228 (0.19-0.31) 0.159 (0.12-0.21) 0.105 (0.08-0.15) 0.0480

WEn(s5) 0.284 (0.23-0.35) 0.195 (0.12-0.23) 0.144 (0.09-0.16) 0.0480

WEn(s6) 0.389 (0.33-0.41) 0.232 (0.18-0.26) 0.197 (0.18-0.21) 0.0303

WEn(s8) 0.494 (0.45-0.53) 0.476 (0.39-0.51) 0.383 (0.35-0.42) 0.0101 0.0330

sumEn 4.599 (3.97-5.96) 6.016 (4.62-11.43) 3.683 (2.37-4.60) 0.0136

SampEn 0.007 (0.005-0.009) 0.008 (0.006-0.015) 0.005 (0.004-0.006) 0.0431

The table demonstrates the statistically significant differences of features (P refers to rank-sum P value), reflecting temperature complexity within different scales
and frequency bands, between the three groups of patients. Data are presented as median with intraquartile range (25th to 75th percentiles). CWTentro, entropy
derived after continuous wavelet transformation of the whole signal; Wen, wavelet entropy; sumEn, multiscale entropy; SampEn, sample entropy; s, scale.
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successfully between patients with SIRS, sepsis, and septic
shock.
Because of the small data set and to show in the best

way the virtue of the proposed features, an extended
analysis took place. For this reason, both univariate and
multivariate linear classification was performed, showing
that some of the univariate models are already quite
satisfactory, with an improvement by multivariate analy-
sis. Furthermore, the value of the proposed features was
reinforced by the use of clustering techniques, in which
quite concrete clusters were formed, related to the
groups under investigation.
Different studies showed that the low-amplitude fluc-

tuations of skin temperature are caused by rhythmic
alterations in peripheral blood flow, linked with oscilla-
tions of smooth muscle tone. Particularly, only low- and
very-low-frequency fluctuations of simultaneously
recorded blood flow and temperature measurements
seem to be correlated significantly because of the expo-
nential decay of the temperature amplitude, in relation
with the spectral content of the signal [18,19]. For these

reasons, correlations within the frequency range from
0.14 to 2 Hz are compatible with the values of noise
correlations. In a study of Shusterman and Barnea [26],
it was shown that skin-temperature fluctuations between
0.01 and 0.03 Hz were significantly reduced in response
to different types of stress. These oscillations were
attributed to sympathetic nervous system activity,
related to both local autoregulation and reflex neurohu-
moral control of blood flow.
Different authors using a wavelet-based technique for

assessing synchronization and coupling between periph-
eral skin temperature and blood-flow signals, found
increased coherence higher than for uncorrelated white
noise, in two frequency intervals, around 0.1 Hz and
0.007 Hz [18,19]. Although oscillations at approximately
0.1 Hz were attributed to myogenic activity, the latter
spectral range was proven to correlate with biochemical
processes at the level of endothelium [17-19]. The
endothelium plays a pivotal role in regulating blood
flow, controlling the contraction and relaxation of
smooth muscle cells by a release of different

Α Β 
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Figure 3 (a, b) Multiple comparisons of different studying groups for sign_m. The visual representation of the multiple comparisons
windows groups with Bonferroni correction, Kruskal-Wallis (KW) mean ranks, and confidence intervals depicted here, for sign_m. The three
groups differ in terms of WEn (s4, s5, s8), but only the last feature reaches statistical significance between patients with SIRS versus septic shock.
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vasodilators, such as NO or vasoconstrictors [27]. The
production of these molecules can be altered during a
systemic inflammatory response to different noxious sti-
muli [28].
In our study, low- and very-low-frequency compo-

nents of temperature curves exhibited decreased varia-
bility and complexity in patients proven to have sepsis
and shock, compared with SIRS. Maybe this could be
attributed to reduced local blood flow in the first two
groups, which seems to reduce amplitude of vasomotion
[29], related with blood-flow redistribution during severe
inflammation. Although a possible pathophysiologic link
remains unknown, the reduction in metabolic inputs
with local thermoregulation could reflect changes in the
dynamics of the release of different molecules from the
endothelium. For instance, highly and continuously
expressed inducible NO synthase (iNOS) in endothelial
cells with subsequent increased levels of NO in patients
with severe sepsis and septic shock could be associated
with reduced smooth muscle cell oscillations. Moreover,
cytopathic hypoxia, reduced microcirculatory flow, or
number and interaction of vascular territories with

shunt hypoxia that seem to occur during severe sepsis
and septic shock could also be related with low local
metabolic activity [28]. Concerning ultra-low-frequency
variations, alterations of different rhythmic processes,
such as oscillations between rapid-eye movement (REM)
and non-REM sleep, pituitary hormonal secretions or
NF-�B cellular signaling pathways, have been supposed
to influence ultradian rhythms in both humans and ani-
mals; however, their possible effects on skin-temperature
oscillations during systemic inflammation remain
unknown [30-32].
Except for considering fluctuations of local cutaneous

circulation as a possible cause of alterations in tempera-
ture oscillatory phenomena during SIRS or sepsis, other
centrally acting mechanisms cannot be excluded. For
instance, circadian rhythms of tumor-necrosis factor-a
(TNF-a) receptors have been linked with central ther-
moregulation, especially during immune activation from
endotoxin, by modulating the availability of free TNF-a
[33]. A possible association between oscillatory behavior
of TNF-a and rhythmic neuronal NF-�B activity, which
has been found to affect thermoregulation [34], could be
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Figure 4 (a through d) Multiple comparisons of different studying groups for sign_mdetr. KW mean ranks and confidence intervals
depicted here, for sign_mdetr. Multiscale entropy (sumEn) of the whole signal, continuous wavelet entropy (cwtEnrto) for the whole signal and
for scale 3, and finally, wavelet entropy per scale 4 (WEn(s4)) exhibited significant differences between different groups of patients.
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related to changes in ultradian spectral fluctuations of
temperature signals during infection.
In our study, we decided to exclude many patients eli-

gible for further analysis based on our inclusion criteria,
aiming to increase homogeneity as much as possible. For
that reason, all studied individuals were sedated during

temperature recordings, something that enhances accu-
racy of our results, because anesthesia has been found to
affect negatively the amplitude of different frequency
components of microcirculatory flow, estimated with
wavelets [35]. In addition, patients with already proven
neurologic (11 patients), metabolic, or other toxic causes
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Figure 5 Clusters of dissimilarity between the three groups of patients. Pairwise distance and visualization of the dissimilarity matrix, based
on the euclidean distance, between wavelet entropy of scales reflecting metabolic (a) and other unknown inputs (b) on very-low-frequency
(scales 2 to 3, 0.025 to 0.006 Hz) and ultra-low-frequency bands (scales 5 to 6, 0.003 to 0.0007 Hz), respectively. Red color reflects dissimilarity
(high distance), and blue color, similarity (small distance) between patients belonging to groups 1, 2, and 3.

Table 5 Clustering measures

Cluster
points

Intraclass
distance

Interclass
distance

n1 n2 c1 c2 d12 d21 Clustering cost Sensitivity Specificity Accuracy

DWT high ultradian entropy (WEn5-6) 15 7 8.73 6.73 3.85 3.86 1.673 82.35% 80% 81.81%

CWT entropy neuro meta 5 17 6.15 6.79 4.25 4.24 1.749 60% 88.23% 81.81%

CWT
entropies

8 14 10.61 4.11 3.61 2.79 1.777 100% 82.35% 86.36%

CWT entro ultradian 14 8 3.95 10.76 2.68 3.57 1.788 82.35% 100% 86.36%

SampEn and sumEn 17 5 8.43 6.34 3.28 3.83 1.905 76.47% 20% 63.63%

CWT entro all and neurogenic 5 17 6.78 8.73 4.21 4.09 1.990 60% 88.23% 81.81%

DWT low ultradian entropy (WEn7-8) 15 7 13.49 9.46 3.17 3.44 2.402 76.47% 60% 72.72%

DWT Neurogenic and metabolic entropy (WEn1-2-3) 6 16 9.63 11.71 5.83 6.36 2.420 60% 82.35% 77.27%

T Mean & Std 9 13 11.63 12.78 2.35 2.13 2.499 40% 58.82% 54.54%

CWT energy 4 18 14.48 11.92 8.17 6.35 4.353 0 76.47% 59.09%

The table shows, for sign_mdetr signal, clusters formed for different feature sets, number of data per cluster (n1 and n2), along with the intraclass euclidean
distance for each cluster (c1 and c2), the mean interclass distance to center of the class (d12 and d21), the cost, calculated as the sum of intraclass and inverse
interclass distances, and the correspondence of clustering with the a posteriori knowledge of groups (as accuracy, sensitivity, and specificity, with sensitivity
referring to SIRS). The schemes are sorted in terms of cost. Schemes resulting in clustering with fewer than three members are omitted. DWT, discrete wavelet
transformation; CWT, continuous wavelet transformation; SampEn, sample entropy; sumEn, multiscale entropy; SampEn, sample entropy; T, temperature; Std,
standard deviation.
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of SIRS (two patients) were not included, because we
were interested only in cases of suspected infection
according to published guidelines [2]. Patients did not
differ in terms of APACHE II score on admission; how-
ever, subjects with septic shock had a higher SOFA score
on the day before development of a suspected infection
and inclusion into the study (data not shown). For these
reasons, previous immunologic status cannot be excluded
as a possible confounder to our findings.
In this study, we cannot exclude misdiagnosis of some

patients with infection not proven by the microbiologic

laboratory, because no gold standard exists for the separa-
tion of SIRS from sepsis, and everybody was receiving anti-
microbial treatment during recruitment. Nonetheless, we
believe that the a posteriori classification of patients in the
three groups, after confirmation of infection, seems more
or less accurate, because none of patients with SIRS was
receiving antibiotics before inclusion in the study, whereas
all diagnoses of infections were based on recently pub-
lished guidelines [2] and on positive results from quantita-
tive cultures, approximately 72 hours after development of
a systemic inflammatory state.

Table 6 The pairwise classification results

Groups Feature set Accuracy Sensitivity Specificity

SIRS vs Sepsis sign_m WE(s2) 40% 80% 20%

sign_m WE(s2), WEn(s6) 80% 80% 80%

sign_mdetr CWTentro4 80% 80% 80%

sign_mdetr CWTentro4, WE(s5), CWTene 93.33% 100% 90%

SIRS vs S. Shock sign_m WEn(s5) 83.33% 80% 85.71%

sign_m WEn(s5), WEn(s6), WEn(s8), WE(s8) 91.67% 80% 100%

sign_mdetr WEn(s6) 83.33% 80% 85.71%

sign_mdetr WEn(s6), CWTentro4, WE(s8) 100% 100% 100%

The table demonstrates the randset feature sets and the classification performance achieved with a linear classifier and leave-one-out cross-validation, in terms of
accuracy, sensitivity, and specificity. Here, sensitivity refers to SIRS, and specificity refers to sepsis or septic shock, respectively. The results are presented for
sign_m and sign_mdetr, separately. Both univariate models for the best feature selected, and multivariate models, are depicted. WE, wavelet energy; Wen, wavelet
entropy; CWT, continuous wavelet transformation; s, scale; entro4, entropy per scale 4.

A B
Figure 6 Continuous wavelet transformation (CWT) of temperature curves in two patients with sepsis and septic shock. The figure
depicts two examples of CWT of temperature recordings from a patient with VAP and sepsis (a) and from someone with pancreatitis and septic
shock (b). The three-dimensional plots include absolute wavelet coefficients, time (minutes), and frequency (Hz). The third dimension (amplitude)
that corresponds to the wavelet coefficient is represented by a color palette in which blue-violet is the minimal value, and purple-red is the
maximal value. The wavelet coefficients are relative to the signal under study and provide information regarding its variability within a frequency
band (scale). Coefficients in very-low and ultra-low-frequency ranges in case (a) seem increased in relation to case (b). Moreover, an apparent
irregularity of coefficients’ distribution exists in the first compared with the second graph, indicating reduced complexity and reduced amount of
inputs on temperature regulation within very-low and ultra-low frequencies in the patient with septic shock.
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The small number of patients is a significant limita-
tion; however, the adoption of multivariate tools with
different data-mining techniques led to a classification
with an accuracy of 80%. To avoid possible overfitting
of data, we tried to implement both univariate and mul-
tivariate models and included only two features in our
clustering schemes, whereas a cross-validation technique
also was adopted. However, validation with a more-
extended data set is a necessary future step.
The adoption of such methods for monitoring of differ-

ent physiologic parameters fulfills the requirements of
contemporary critical care medicine for better and more-
accurate early warning signs for patients, because they are
based on high-frequency measurements and are much
easier to get at the bedside. In addition, variability analysis
reveals information that is “hidden” with conventional
monitoring techniques. For that reason, in our study, we
were not interested in mean temperature values, which are
not representative of true core temperature and can also
vary between different places of measurement, but we
wanted to track dynamic changes of continuously moni-
tored temperature, indicative of a dysegulated homeostasis
of a complex thermoregulatory system during severe
inflammation [7,8]. These results of reduced temperature
complexity during severe sepsis and septic shock are in
line with findings from other studies, showing that critical
illness alters the inherent dynamics of different physiologic
signals, indicative of a system “decomplexification” [9,36].
Nonetheless, an assessment of the potential impact of dif-
ferent places of measurement on temperature variability
could be the aim of a future study. Subsequently, we sug-
gest that a wavelet-based classification rule could guide
clinicians, 24 hours after a suspected infectious episode, to
decide properly about their patients. However, validation
of our preliminary results in a larger and more heteroge-
neous cohort of patients will strengthen our findings.
Furthermore, a comparison between a “physiomarker”

and a biomarker model, including different biomarkers such
as PCT, could add significant value to our results. Nonethe-
less, standardization of different biosignal-processing techni-
ques, appropriate selection of different parameters, sampling
frequency, or noise filtering is urgently needed.
Finally, the development of a real-time system of risk

stratification for clinical deterioration due to infection
and using continuous temperature monitoring could
provide early markers of sepsis or development of septic
shock. Such efforts have already managed to track
changes in variability and complexity of heart-rate sig-
nals in sepsis patients, much earlier than an increase in
body temperature [37,38].

Conclusions
A healthy state exhibits some degree of stochastic varia-
bility and complexity in physiologic variables, such as

temperature. This variability accompanies healthy sys-
tems and has been suggested to be responsible for their
greater adaptability and functionality related to patholo-
gic systems [39]. Critical illness seems to disrupt normal
rhythms, giving rise to more periodic patterns in a sys-
tem’s output, such as temperature. Different techniques
have been used for assessing complexity of inherent
dynamics of physiologic signals. Wavelet transformation
seems to have many advantages over other time-series
processing techniques, because it can assess both varia-
bility and complexity of temperature oscillations in dif-
ferent frequency bands that have been found to be
affected by both neurogenic and endothelial influences.
The early and accurate discrimination of a systemic
inflammation, based on the presence or absence of
infection, is a difficult task, and the adoption of such
quantitative methods could add significant value to the
already existing biomarkers, because they are inexpen-
sive, noninvasive, and permit continuous monitoring of
patient status. We suggest that temperature complexity
in very-low and ultra-low frequencies is able to classify
patients with SIRS, sepsis, and septic shock, possibly
reflecting severity of illness. However, because of the
small sample size, these findings remain indicative, and
larger groups must be studied for validating the diagnos-
tic accuracy of our methods.

Key messages
• Analysis of continuously monitored temperature
signals in critically ill patients with different proces-
sing techniques can be of significant value for the
discrimination of patients with infectious or nonin-
fectious causes of inflammatory states.
• The use of wavelet analysis seems to offer a signifi-
cant benefit in relation to other tools, because it can
detect changes of both variability and complexity in
different frequency bands of temperature signals,
which have been shown by others to correlate with
physiologic phenomena.
• An increased complexity in all spectral ranges of
temperature curves, and particularly in ultradian fre-
quencies, is observed in patients with SIRS, versus
sepsis and septic shock.
• The temperature oscillations in the region of very-
low and ultra-low frequencies that are influenced by
endothelial and other unknown inputs, respectively,
are significantly reduced in patients with sepsis and
septic shock versus SIRS.
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