From: Nomenclature for renal replacement therapy in acute kidney injury: basic principles
Measurement | Name | Symbol | Unit of measure | Formula |
---|---|---|---|---|
Efficiency | Target (prescribed) | K _{ T } | ml/kg/h | Assuming that the patient’s clinical condition does not change, K_{T} is a constant value throughout the treatment |
Efficiency | Target machine | K _{ Tm } | ml/kg/h | Considering the downtime and the reduction in clearance properties of the membranes during treatment, K _{ Tm } is usually set at a greater value than K _{ T } |
Efficiency | Current | K _{ Cr } | ml/kg/h | \( {K}_{Cr}=\frac{\left({Q}_R^{PRE}+{Q}_D+{Q}_{UF}^{NET}+{Q}_R^{POST}\right)}{B.W.}\cdot \frac{Q_B\ }{Q_B + {Q}_R^{PRE}} \) |
Efficiency | Average | K _{ Am } | ml/kg/h | \( {K}_{Am}=\frac{1}{t_1}\cdot {\int}_0^{t_1} KCrdt \) |
Efficiency | Projected | K _{ Pr } | ml/kg/h |
\( {K}_{Pr}=\frac{{\displaystyle {\int}_0^{t_1}}{K}_{Cr}dt + \left({t}_{tot}-{t}_1\right) \cdot {K}_{Tm}^{\hbox{'}}}{t_{tot}} \)
where K _{ Tm } ^{'} is the new target machine efficiency set |
Efficiency | Current effective delivered | K _{ Cd } | ml/kg/h | \( {K}_{Cd}=\left({Q}_B\cdot \frac{C_{Bi}-{C}_{Bo}}{C_{Bi}}+{Q}_{UF}\cdot \frac{C_{Bo}}{C_{Bi}}\right)\cdot \frac{1}{B.W.} \) |
Efficiency | Average effective delivered | K _{ Aed } | ml/kg/h | \( {K}_{Aed}=\frac{1}{t_1}\cdot {\displaystyle \underset{0}{\overset{t_1}{\int }}}{K}_{Cd}dt \) |
Intensity | Target (prescribed) | I _{ T } | ml/kg | Blood volume that should be cleared applying K _{ T } during the total time of treatment |
Intensity | Target machine | I _{ Tm } | ml/kg | Blood volume that should be cleared applying K _{ Tm } during the total time of treatment |
Intensity | Current | I _{ Cr } | ml/kg | I _{ Cr } = K _{ Cr } ⋅ t _{ tot } |
Intensity | Average | I _{ Am } | ml/kg | \( {I}_{Am}\kern0.5em =\kern0.5em {K}_{Cm}\cdot {t}_1\kern0.5em =\kern0.5em {\int}_0^{t_1}{K}_{Cr}dt \) |
Intensity | Projected | I _{ Pr } | ml/kg | \( {I}_{Pr}={K}_{Pr}\cdot {t}_{tot}=\kern0.5em {\int}_0^{t_1}{K}_{Cr}dt + \left({t}_{tot}-{t}_1\right) \cdot {K}_{Tm}^{\hbox{'}} \) |
Intensity | Current effective delivered | I _{ Cd } | ml/kg | I _{ Cd } = K _{ Cd } ⋅ t _{1} |
Intensity | Average effective delivered | I _{ Aed } | ml/kg | \( {I}_{Aed}={K}_{Ced}\cdot {t}_1\kern0.5em =\kern0.5em {\int}_0^{t_1}{K}_{Cd}dt \) |
Efficacy | Target (prescribed) | E _{ T } | Dimensionless | Solute removal obtained applying I _{ T } to the volume of distribution of the solute |
Efficacy | Target machine | E _{ Tm } | Dimensionless | Solute removal obtained applying I _{ Tm } to the volume of distribution of the solute |
Efficacy | Current | E _{ Cr } | Dimensionless | \( {E}_{Cr}=\frac{I_{Cr}}{V}=\frac{K_{Cr} \cdot {t}_{tot}}{V} \) |
Efficacy | Average | E _{ Am } | Dimensionless | \( {E}_{Am}=\frac{I_{Cm}}{V}=\frac{1}{V}{\int}_0^{t_1}{K}_{Cr}dt \) |
Efficacy | Projected | E _{ Pr } | Dimensionless | \( {E}_{Pr}=\frac{I_{Pr}}{V}=\frac{1}{V}\cdot \left[{\int}_0^{t_1}{K}_{Cr}dt + \left({t}_{tot}-{t}_1\right) \cdot {K}_{Tm}^{\hbox{'}}\right] \) |
Efficacy | Current effective delivered | E _{ Cd } | Dimensionless | \( {E}_{Cd}=\frac{I_{Cd}}{V}=\frac{K_{Cd}\cdot {t}_1}{V}=\frac{1}{V}\cdot \left({Q}_B\cdot \frac{C_{Bi}-{C}_{Bo}}{C_{Bi}}+{Q}_{UF}\cdot \frac{C_{Bo}}{C_{Bi}}\right)\cdot \frac{1}{B.W.} \cdot {t}_1 \) |
Efficacy | Average effective delivered | E _{ Aed } | Dimensionless | \( {E}_{Aed}=\frac{I_{Ced}}{V}=\frac{K_{Ced}\cdot {t}_1}{V}=\frac{1}{V}\cdot {\int}_0^{t_1}{K}_{Cd}dt \) |