Skip to main content
Figure 2 | Critical Care

Figure 2

From: Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection

Figure 2

Identified targets for xenon that may mediate xenon anesthesia and neuroprotection. (a) Xenon binds to the N-methyl-D-aspartate (NMDA) receptor at its glycine binding site. (b) Lineweaver-Burk plot showing competitive inhibition of the NMDA receptor by xenon. Inhibition is glycine dependent, with greater inhibition at low glycine concentration (1 μM) (inset upper right) compared with high glycine concentration (100 μM) (inset lower left). (c) The two-pore domain potassium channel TREK-1 is activated by xenon in a concentration-dependent manner. Inset: the current activated by 80% xenon. Horizontal bar, 2-minute application of xenon, the current amplitude is 106 pA. (d) The ATP-sensitive potassium (KATP) channel is activated by xenon. Main figure shows that 80% xenon activates KATP and that the current is abolished by 0.1 mM of the specific blocker tolbutamide (Tb). Inset: percentage activation of the current measured at -20 mV by 50% and 80% xenon. *P < 0.05. Figures adapted from: (a), (b) Dickinson and colleagues [31], (c) Gruss and colleagues [42], and (d) Bantel and colleagues [45].

Back to article page