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Abstract

Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients.
Itis associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the intro-
duction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing

in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharma-
cokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site
of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspec-
tives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating

to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be
provided.

Highlights

- Intra-abdominal candidiasis presents specific pharmacokinetic (PK) and pharmacodynamic (PD) challenges
where suboptimal antifungal concentrations are likely to occur leading to high risk of treatment failure.

- The intra-abdominal cavity has been highlighted as a hidden reservoir for resistance to antifungals includ-
ing echinocandins.

- To date, all antifungal PK/PD studies in intra-abdominal candidiasis have enrolled small cohorts and have
only provided post-operative antifungal concentrations analysis.

- Based on current evidence, high dosing regimens of antifungals should be strongly considered, especially
at the onset of infection.

- The place of new antifungals (rezafungin, ibrexafungerp) requires more robust clinical studies including PK/PD
analysis in critically ill patients.
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Introduction

Intra-abdominal candidiasis (IAC) is defined as the iso-
lation of Candida from a sterile intra-abdominal sample
along with symptoms of intra-abdominal infection [1,
2]. Current epidemiological data quantifies IAC hav-
ing a cumulative incidence of 1.84 cases per 1,000 ICU
admissions and a mortality up to 50% [3, 4]. C. albicans
accounts for most infections followed by non-albicans
species such as C. glabrata and C. parapsilosis [5, 6].

The management of IAC requires initiating early and
adequate source control, and prompt initiation of anti-
fungal therapy [7, 8]. Current guidelines recommend
echinocandins as the first-line agent for empirical treat-
ment of IAC in critically ill patients [8—10]. Fluconazole
has been recommended for clinically stable patients with
no recent exposure to azoles in the setting of flucona-
zole-susceptible pathogens [10, 11]. Second-line agents
include the liposomal formulation of amphotericin B
[10, 11] and voriconazole [12]. However, these guidelines
do not provide any specific recommendations regarding
alternative dosing regimens in the critically ill [7]. Indeed,
only standardized antifungal dosing regimens are pro-
posed. Of note, specific guidelines in cases of critically
ill obese patients or those receiving extracorporeal sup-
port are lacking, even though IAC is common to these
situations which are associated with difficult-to-predict
antifungal concentrations [13]. The considerable pharma-
cokinetics (PK) inter-variability of antifungals was high-
lighted in the multinational Defining Antibiotic Levels in
Intensive care Unit (DALI) study [14].

Most of the studies providing antifungal dosing rec-
ommendations for invasive candidiasis generally include
more patients with candidemia than IAC [15]. Thus,
most studies describe antifungal exposure in the central
compartment (i.e., blood). However, it has been demon-
strated that many antifungals diffuse poorly into intra-
abdominal collections [13, 16]. Therefore, considering
that critically ill patients may have lower plasma antifun-
gal concentrations compared to other population groups,
the risk of suboptimal concentrations at the site of infec-
tion may be even higher [17, 18].

This review explores the pharmacokinetic and pharma-
codynamic considerations for antifungal therapy in the
treatment of IAC among critically ill patients. Addition-
ally, it proposes dose optimisation strategies of the most
used antifungals in the treatment of IAC.

Pharmacokinetic considerations

Critically ill patients have severe pathophysiological
changes driven by a change in the volume of distribution
(Vd) and/or modified renal and/or hepatic clearances
[19]. Altered Vd is characterized by the expansion of the
interstitial space secondary to an increase in capillary
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permeability, vascular filling, and change in protein bind-
ing. “Capillary leakage” is caused by systemic inflamma-
tion, a common feature during sepsis that is even more
pronounced in septic shock. In critically ill patients
with intra-abdominal infections, sepsis and septic shock
affect more than 60% and 30% of them, respectively
[20]. Abdominal sepsis is also associated with a cytokine
“storm’;, further aggravating the patient’s inflammatory
state compared to sepsis of other origins [21]. Besides,
abdominal surgery induced-trauma results in post-oper-
ative inflammation [22, 23]. The degree of post-operative
inflammation depends on the surgical approach [24].
Laparotomy, which is the most commonly used [25], is
more aggressive and thereby highly “inflammatory” com-
pared to laparoscopic surgery. In addition to this “high”
inflammatory state, abdominal sepsis is characterized by
severe hypovolemia caused by a high prevalence of fever
and other sources of fluid loss including anorexia, nau-
sea, and vomiting [26]. Surgery also provides changes in
extracellular fluid space mostly driven by neuroendocrine
mechanisms. Indeed, part of the endocrine response to
surgery involves the increased secretion of antidiuretic
hormone and aldosterone leading to salt and water reten-
tion [27]. Sequestration of fluids may also occur due to
large volume of fluids lost into a distended gut or the
peritoneal cavity [28]. Thus, vascular filling is poten-
tially massive in the sickest of these patients, with up to
10 L administered during the first days of fluid resus-
citation [17, 29]. An increase in the drug Vd equates to
insufficient drug concentrations within the central com-
partment (i.e. plasma). Lastly, surgery itself affects drug
distribution by changes in blood volume (blood and fluid
losses during laparotomy) and altered regional perfusion
secondary to an increase in circulating catecholamines
induced by surgical trauma [28]. Local inflammation
combined with decreases in regional blood flow contrib-
ute to drug diffusion impairment.

During the post-operative period, interventions that
utilise extracorporeal circuits such as renal replacement
therapy (RRT) or extracorporeal membrane oxygena-
tion (ECMO) may also contribute to changes in drug
clearance depending on the physicochemical proper-
ties of the drug [30, 31]. In addition, alterations of pro-
tein binding are highly frequent in surgical ICU patients
because of a physiological decrease of pre-albumin and
albumin in response to an increase of inflammatory
protein. Hypoalbuminemia is worsened by vascular fill-
ing, malnutrition and a catabolic state, frequent situa-
tions seen in post-operative surgical patients [32]. Lastly,
indwelling abdominal drains left in situ post-operatively
also contribute to an increased elimination of drug [33].
Indeed, previous studies have reported that the increase
in drug clearance is proportional to drainage output [34].
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Therefore, critically ill patients with IAC have significant
drug PK alteration that potentially predisposes them to
inadequate drug concentrations that can be exacerbated
by surgical interventions during their ICU admission.

Pharmacokinetic properties of parenteral
antifungals used in intra-abdominal candidiasis
Table 1 summarises the PK of antifungal agents used
in the treatment of intra-abdominal candidiasis. Dos-
ing regimens and therapeutic ranges for therapeutic
drug monitoring (TDM) are proposed based on current
evidence.

First-line agents

Fluconazole

Fluconazole is a triazole which inhibits the
14-a-demethylase which is an enzyme required for con-
version of lanosterol into ergosterol. It has low plasma
protein binding of 12% and is a weakly basic, highly
polar, hydrophilic (LogP 0.5) drug with a small molecu-
lar weight [35]. These physicochemical properties expose
fluconazole to unpredictable concentrations in the criti-
cally ill patient [36, 37]. Indeed, hydrophilic, low protein-
binding and low molecular weight are highly influenced
by increased Vd and renal clearance; leading to low drug
exposure [19].

Fluconazole exhibits concentration- and time-depend-
ent antifungal activity with a prolonged post-antifungal
effect. The predictive PK/PD index associated with maxi-
mal fungal killing is the ratio of free-drug area under
the concentration time curve (from 0 to 24 h) to mini-
mum inhibitory concentration of the fungal organism
(fAUC,, 5,/MIC). An fAUC,,,/MIC of greater than 100
is associated with optimal fungicidal activity and positive
outcomes in critically ill patients [38, 39]. Current dos-
ing regimens in critically ill patients with normal renal
function recommend a loading dose of 12 mg/kg intrave-
nously followed by a maintenance dose of 6—12 mg/kg/
day [40]. Maintenance doses of up to 18 mg/kg per day
have been proposed [41]. Factors associated with sub-
optimal fluconazole exposure include obesity, high renal
clearance and patients undergoing continuous RRT [42,
43]. In obese patients, total body weight has been used
to calculate doses [44]. In the setting of RRT, adjust-
ing the maintenance dose to 800 mg (400 mg q12h) has
been suggested [45]. In contrast, ECMO by itself does
not seem to influence fluconazole PK [31]. Indeed, PK
alteration under ECMO is mostly related to lipophilic-
ity or changes in Vd and to date, no sequestration in the
ECMO circuit has been demonstrated with fluconazole.
However, data in adult patients are scarce and more stud-
ies are warranted to better address optimal dosing of flu-
conazole in patients undergoing ECMO.
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Regarding abdominal diffusion of fluconazole, very
few data are available [46]. Sinnollareddy et al. [47] have
measured subcutaneous concentrations of fluconazole in
critically ill patients and reported an AUC,_,, 50% lower
than in plasma. A mini-case series of three liver trans-
plant patients reported that the ascites-to-plasma ratio
of fluconazole was 0.85 [48]. A case report of a patient
with cholecystitis showed that biliary fluconazole con-
centrations were 50% lower than in the plasma [49].
Lastly, relatively good penetration (88 to 91%) of flucon-
azole in the pancreas has been reported [50]. This is of
significance given that pancreatic necrosis is a frequent
source of IAC. Therefore, if tissue penetration based on
small studies advocate for relatively good penetration of
fluconazole (>50%), physicochemical properties of flu-
conazole expose it to suboptimal plasma concentrations
in critically ill patients. As low plasma concentrations
are associated with even lower tissue concentrations for
hydrophilic drugs [51], the risk of suboptimal fluconazole
concentrations at the site of infection must be considered
very high. Thus, higher doses and TDM should be con-
sidered when treating IAC with fluconazole. However,
data regarding the therapeutic range of fluconazole are
lacking [40, 52, 53]. For instance, a mean trough concen-
tration of 14 mg/L+11 mg/L was reported in the DALI
study [14]. A trough concentration of 10 to 15 mg/L has
been proposed as a basis for fluconazole TDM [52].

Echinocandins

General considerations Echinocandins are cyclic hexa-
lipopeptides targeting the fungal wall by inhibiting 1.3
beta-d-glucan synthesis [54]. They are fungicidal against
most pathogenic species of Candida [55].

Echinocandins are highly protein-bound (>90%),
hydrophilic molecules which are eliminated through
ubiquitous spontaneous degradation. The PK/PD index
most frequently reported for echinocandins is AUC/
MIC [56, 57]. The AUC/MIC ratios ranged from >250
(caspofungin/C. tropicalis) to>10,000 (micafungin/C.
albicans) [58] (Table 1). Thanks to low drug-drug inter-
actions, non-renal elimination, and less extensive hepatic
clearance, echinocandins are often considered easy-to-
dose drugs [13]. Reported adverse events to date have
not established any exposure-related toxicity [56]. Addi-
tionally, high doses in the treatment of endocarditis are
well tolerated [59]. However, a growing body of evidence
has challenged the concept of fixed standard doses [18,
56, 60]. Higher body weights may require higher dosing
[61, 62], whilst patients with hypoalbuminemia may have
an increased Vd and clearance [13]. Most studies point
towards a 20% lower exposures in critically ill patients
when compared with healthy volunteers [63—65].
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Caspofungin It has been suggested to increase the load-
ing dose to 140 mg in critically ill patients [66]. Likewise,
a higher, weight-based dose of 2 mg/kg as a loading dose
and 1.25 mg/kg as a maintenance dose have been rec-
ommended in critically ill obese patients [67]. Regard-
ing ECMO, caspofungin loss via sequestering within
the ECMO circuit was reported, suggesting to increase
the loading and 24-hourly maintenance dose to 70 mg,
respectively [31, 68].

Micafungin It has been proposed to increase the
maintenance dose from 150 mg to between 200 to 300
mg 24-hourly in critically ill obese patients (>125 kg),
depending on the MIC [61]. In patients with ECMO, it has
been suggested to increase the micafungin loading and
24-hourly maintenance dose to 150 and 70 mg, respec-
tively [31].

Anidulafungin If suboptimal exposures have been
reported (~30% lower concentrations compared to
healthy volunteers [69]), current data does not define
what higher doses should be used [68]. No dosing adjust-
ments are currently recommended for anidulafungin dur-
ing ECMO.

Peritoneal diffusion of echinocandins Regarding peri-
toneal diffusion of echinocandins, eight PK studies [57,
70-76] (Table 2) were performed and reported an overall
penetration ratio of ~ 30%, knowing that no PK/PD target
in the peritoneum has been defined to date. One study
also reported highly variable ascites-to-plasma echino-
candin penetration ratios ranging from 0.02 to 0.46 in
ascitic fluids [48].

Which lessons? Recent data supporting the need for
higher echinocandin doses are mostly from PK studies.
This data does not demonstrate, however, that the use of
these proposed higher echinocandin doses is associated
with better clinical outcomes.

Considering the PK variability of echinocandins in the
plasma and the low to moderate penetration ratios in
the peritoneal fluid, the risk of suboptimal echinocandin
exposures at the site of infection remains high. Thus, use
of higher doses and TDM are valid considerations. How-
ever, there are currently no defined therapeutic ranges for
echinocandins [40, 52, 53]. Some authors have proposed
a total trough concentration>1 mg/L or between 1 and 3
mg/L [52, 53].

Second-line agents

Liposomal amphotericin B

The lipid formulations of amphotericin B deoxycho-
late (L-AmB) are recommended as alternatives in cases
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of echinocandin-resistant Candida infections [10, 11].
L-AmB has many PK/PD advantages such as broad-
spectrum coverage, rapid time-kill rate, post-antifungal
effect, and action against biofilm formation [77, 78]. PK/
PD studies of L-AmB involving critically ill patients are
scarce and reported lower Vd with considerable variabil-
ity in L-AmB concentrations [79-81]. Furthermore, no
clear PK/PD target has been defined for the liposomal
formulation. Table 1 provides general PK data and influ-
ence of RRT [54], ECMO [82-84], and obesity on L-AmB
dosing [85]. Considering the high variability of L-AmB
concentrations with a high risk of underdosing, it seems
reasonable to propose the dose of 5 mg/kg/day in criti-
cally ill patients with IAC which has been reported to be
safe [86]. Last, one pediatric study has evaluated perito-
neal diffusion and reported lower peritoneal L-AmB con-
centrations than plasma concentrations [87].

Voriconazole

Voriconazole is the second most used azole in critically ill
patients with IAC [88]. It has been proposed as an alter-
native option in severe intra-abdominal infections that
have a risk of fluconazole-resistant Candida strains [12].
Data in critically ill patients are scarce and reported large
interindividual variability [89, 90]. PK/PD main charac-
teristics of voriconazole are provided in Table 1 [54, 90]
with influence of various clinical situations [13, 91-94]
and extracorporeal supports [31, 54, 92, 95-98]. Consid-
ering the high interindividual variability and high occur-
rence of drug-drug interactions, voriconazole TDM is
strongly recommended [13, 40]. Last, one study reported
a peritoneal penetration ratio of 0.54 and 0.67 for single
and multiple doses, respectively (Table 3) [99].

New antifungals

Among new antifungals arriving through the develop-
ment pipeline [100], Rezafungin and Ibrexafungerp have
been evaluated within phase 3 clinical trials in patients
with invasive candidiasis [101-103]. Rezafungin is a new
echinocandin with extended half-life and improved tissue
penetration compared to other echinocandins [104—106].
The main PK/PD parameters [106, 107] and spectrum of
activity [108, 109] are described in Table 2. Rezafungin
PK is not affected by age, sex, race, body weight (34—
155 kg), renal clearance (9.3 to>120 ml/min), continu-
ous RRT [110], and impaired liver function (Child Pugh
B or C) [111]. The PK/PD properties of rezafungin may
advocate its use in IAC. Indeed, as it has been reported
that IAC could provide a reservoir for the emergence of
Candida resistance [112], considering the front-loaded
exposure and higher tissue penetration, rezafungin may
be associated with a lower risk of emergence of resistance
compared to the other echinocandins [113]. However,
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Table 3 Overview of pharmacokinetic and pharmacodynamic parameters and dosing regimens of new antifungal agents

Rezafungin Ibrexafungerp
(CD101, Rezzayo ™) (SCY-078, MK-3118)
Class Echinocandin Triterpenoid
(structural analog of anidulafungin) (Semi-synthetic derivative of enfumafungin)
Indication Treatment of candidemia and invasive candidiasis, in cases Treatment of vulvovaginal candidiasis
with limited or no alternative antifungal options
Authorities'approvals EMA: 2022 FDA: 2021
FDA: 2023
Recommended dosing regimen LD 400 mg LD 1000-1500 mg
MD 200 mg weekly MD 500-750 mg daily
Mode of administration intravenous oral
Bioavailability Not applicable 35 to 50%
Crnax (Ma/L) 11.8-19.2 043
AUC (mg*h/L) 667-827 6.8
Vd (L/kg) 0.95 8.5
Protein binding (%) 87.5-936 99.5-99.8
Half-life (h) 152 20-30
CL (mL/min) 58 880
Candida spectrum All All
Including C. auris Including C. auris
( for C parapsilosis) ( for C krusei, lusitaniae and quillermondi)
PK/PD target FAUC/MIC FAUC/MIC
Critically ill patients No data No data
Critically ill patients with IAC No data No data

Animal model with IAC

Faster, higher, and longer peritoneal diffusion

Excellent penetration in the liver

According to [100-120]

AUC: area under the curve; CL: clearance; C,,;,,: minimal concentration; C,,,,,: maximal concentration; fAUC: AUC of the free concentration; EMA: European Medicines

min® max*

Agency; FDA: U.S Food and Drug administration; IAC: intra-abdominal candidiasis; IV: intravenous; LD: loading dose; MD: maintain dose; MIC: minimal inhibitory
concentration; PK/PD: pharmacokinetic and pharmacodynamic; Vd: volume of distribution

its half-life precludes dose adjustment before one week.
Considering the dynamic process of PK alteration in crit-
ically ill patients, clinical studies are warranted to quan-
tify rezafungin exposure at the onset of infection.

Ibrexafungerp inhibits the production of 1.3-beta-glu-
can through non-competitive inhibition of the 1.3-beta-
glucan synthase complex [114, 115]. The main PK/PD
parameters [116-119] and spectrum of activity [114,
119] are described in Table 2. No dosage adjustment is
recommended in patients with renal and mild-to-mod-
erate hepatic impairment. Excellent tissue penetration
has been reported in the liver, lung, kidney, spleen, skin
and bone [114]. Regarding IAC, one murine model has
confirmed excellent penetration of ibrexafungerp pen-
etration in the liver with prolonged therapeutic exposure
[120].

In addition to its interest in echinocandin Candida
resistant strains, ibrexafungerp could be useful as an oral
drug in replacement of azoles for de-escalation, espe-
cially when azoles are not well-tolerated. Ibrexafungerp is
currently under investigation for step-down therapy after
initial empirical treatment with echinocandins (clinical-
Trials.gov number NCT02244606).

Pharmacodynamic considerations
Mechanisms of antifungal resistance
An increase in fluconazole and echinocandin resistance
has been reported in both C. albicans and non-albicans
species. This increase in antifungal resistance is mainly
associated with an increased exposure to antifungal ther-
apy in the ICU [112, 121, 122].

Mechanisms of antifungal resistance depend on the
Candida species as well as the antifungal [123]. Broadly,
there are three main mechanisms of antifungal resistance:

+ Presence of biofilm, where the highest MICs have
been observed mostly from in vitro studies [124],

+ Increased number of efflux pumps which precludes
accumulation of antifungal in the fungal cell [125],

+ Reduced 1.3 beta-d-glucan synthase sensitivity [125].

These three mechanisms have been observed in C. albi-
cans. The reduction in 1.3 beta-d-glucan synthase sensi-
tivity caused by a mutation in FKS1 and FKS2 genes has
been demonstrated to confer a cross resistance to azoles
and echinocandins. C. glabrata has a reduced suscepti-
bility to azoles secondary to an overexpression of efflux
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pumps [125] and a reduced susceptibility to echinocan-
dins through mutations in the FKS1 or FKS2 genes [126].

Antifungal resistance in IAC is due to poor tissue diffusion
Studies focusing on IAC are scarce and mostly come
from animal model. Zhao et al. [105] reported a poor dif-
fusion within the lesion during the first 6h after a single
dose in a murine model of IAC. These results highlighted,
especially during the first day of therapy, insufficient drug
exposure which potentially promotes development of
antifungal resistance. A second study from Cheng et al.
[127] used a murine model of TAC to address the viru-
lence of C. glabrata. They reported that if the inoculum
was not controlled at the onset of infection, it led to a
high occurrence of candidemia with 100% of mice death.
Then, if C. glabrata was not eradicate, abscess formation
could occur, which persisted in most of the mice for at
least 28 days. This study describes the dynamic process
of IAC depending on the size of the inoculum and high-
lights the importance of adequate antifungal exposure
at the onset of IAC to avoid candidemia, and thereafter
to avoid abscess and/or tertiary peritonitis where anti-
fungal diffusion remains challenging. One study has
evaluated the prevalence of antifungal resistance among
patients with IAC and prior echinocandin exposure.
FKS mutant Candida isolates were identified in 24%
(6/25) of patients [128], with the presence of FKS muta-
tions associated with prolonged echinocandin exposure
(P=0.01) and therapeutic failures despite source control
interventions (100%). The authors suggest that IAC acts
as a hidden reservoir for the emergence of echinocandin-
resistant Candida. These observations were supported
by the ongoing challenge of insufficient drug penetration
during therapy for IAC supported by animal studies and
clinical studies.

The C. auris threat

In the last decade, an increased number of outbreaks
involving C. auris has been reported worldwide [129,
130]. C. awuris has reduced susceptibility to the pre-
dominantly used antifungals (i.e. azoles, echinocandins,
amphotericin B) [131, 132]. Current microbiological
data reported that 90% of C. auris strains demonstrated
resistance to fluconazole, 30% to amphotericin B, and 5%
to echinocandins [133]. Rezafungin and ibrexafungerp
demonstrated better susceptibility and a reduction in
mortality using an animal C. auris candidemia model
[131]. Thus, considering the risk suboptimal antifungal
concentrations during IAC and the ability to develop
resistance to antifungal of C. auris, the choice of antifun-
gal and dose are of paramount importance in case of IAC
caused by this difficult-to-treat pathogen.
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Which role for the immune response?
Lastly, the role of immunological processes during IAC
must be considered when determining antifungal PK/PD
targets, as both innate and adaptive immunity are impor-
tant for defence against Candida [134]. Neutrophils and
macrophages have an important role in Candida recog-
nition and activation of the immune response thereafter.
As mentioned above, abdominal surgery induced-trauma
provides peri- and post-operative inflammation fol-
lowed by immunosuppression [22]. Impairment of the
immune response during this period can promote Can-
dida growth and exacerbate virulence [135, 136]. Besides,
Candida is frequently encountered in post-operative
peritonitis [137]. As it has been suggested to aim for
higher PK/PD targets for antibiotics in the case of neutro-
penia [138], we wonder if in post-operative peritonitis, a
more aggressive antifungal PK/PD target may need to be
considered. Thus, studies including immunosuppressed
critically ill patients with IAC exploring the relationship
between antifungal exposure and clinical outcomes are
also warranted.

Figure 1 summarises the PK and PD considerations
when treating critically ill patients with IAC requiring
surgery.

Lessons learned from PK/PD studies conducted

in critically ill patients with IAC

Table 3 provides a summary of retrieved PK/PD stud-
ies which have focused on the use of antifungal during
IAC. Details regarding study selection are provided in
the Additional file 1 with the ClinPK statement checklist
[139] for each included study (Additional file 1: Table S2).
Overall, the studies fulfilled more than 80% of PK analysis
checklist items (namely, use of valid quantitative bioana-
lytical methods, description of the PK modelling meth-
ods and software used, and adequate detail of the PK
analysis performed). The main weakness across all stud-
ies was related to patient selection and follow-up from a
clinical perspective.

Population consideration

All study investigators acknowledged the small size of
their cohorts (between 3 and 31 patients) and highlighted
a high inter-subject variability. Moreover, the case-mix of
patients was mostly composed of secondary peritonitis,
with IAC suspected rather than confirmed in most cases.
Thus, the impact of PK/PD target attainment on mortal-
ity cannot be addressed due to the small sample sizes and
the low number of confirmed cases of IAC. Echinocandin
is the most evaluated antifungal class in IAC. Only one
case-series addressed the PK of fluconazole in abdominal
samples, in a non-ICU population.
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Fig. 1 PK/PD alterations during intra-abdominal candidiasis. PK: pharmacokinetic; PD: pharmacodynamic; Vd: volume of distribution; CL:

clearance; ICU: intensive care unit; ATF: antifungal; TDM: therapeutic drug monitoring. Figure 1 is split twice: vertically, where left side represents

the per-operative phase and right side the post-operative period, and horizontally, where the upper case described the sources of pharmacokinetic
alterations, and the lower case, the sources of pharmacodynamic alterations. In the operating room, sources of PK variability are driven

by the sepsis/shock, the resuscitation (fluid resuscitation and catecholamines), the anaesthesia, and inflammation caused by the surgical trauma.
Together they contribute to a high risk of suboptimal antifungal concentrations by increase in volume of distribution and clearance in both the
plasma and the peritoneum. From a pharmacodynamic perspective, before the source control is performed by the surgeon, high inoculum
potentially protect by Candida biofilm and low tissue penetration could promote antifungal resistance. Thus, increased PK/PD target and high dose
of antifungal are required. During the post-operative period, the source control is supposed to be achieved and thereby the sepsis/shock should be
less important. However, organ failures caused by the abdominal sepsis could occur, and provide the need for extracorporeal support such as renal
replacement therapy or ECMO. The presence of surgical drains could increase drug clearance. Therefore, antifungal concentrations are highly
unpredictable, from low to high concentration. From a pharmacodynamic perspective, source control has been performed but an immunoparalysis
could be present and candidemia and/or abscess/tertiary peritonitis could occur. Therefore, therapeutic drug monitoring of antifungal should be

considered

Laboratory consideration

In all studies, only the total concentration was meas-
ured. However, from a tissue diffusion perspective, the
unbound concentration should be assessed in further
studies, especially in critically ill patients because of a
high prevalence of hypoalbuminemia and marked fluc-
tuations in serum albumin concentrations during acute
illness [140]. Regarding peritoneal samples, most stud-
ies obtained samples from in situ abdominal drains and
acknowledged less data compared to blood samples
given these drains were usually removed after 72 h post-
operatively. Therefore, peritoneal fluid samples obtained
intra-operatively would allow for more accurate PK data
describing antifungal abdominal diffusion.

Clinical course of IAC consideration

All studies analysed the PK/PD targets based on anti-
fungal concentrations obtained from the post-operative
period, often two to three days after surgery to evalu-
ate steady-state concentrations. In our opinion, except

perhaps for tertiary peritonitis (poorly studied thus far),
the post-operative period has lower impact on mortal-
ity compared to the surgical period. Indeed, mortality
increases with delay in source control and commence-
ment of antifungal therapy [4]. Thus, if a PK/PD study
aims to evaluate the impact of PK/PD target attainment
on mortality, intra-operative sampling must be con-
sidered because: (i) this is the phase where inoculum is
potentially the highest, (ii) the PK alterations from sepsis,
surgery, and resuscitation therapeutics are maximized,
and (iii) source control is ongoing.

However, there is still a risk of unpredictable antifun-
gal concentrations during the post-operative period.
Indeed, because of all other sources of PK variability in
critically ill patients such as renal failure or extracorpor-
eal support, the risk of suboptimal exposure can persist
throughout the course of therapy [19, 141]. Therefore,
in cases of either candidemia, tertiary peritonitis or
inadequate source control, ensuring optimal antifungal
exposure is crucial, knowing that these situations require
longer antifungal duration [142].
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Further perspectives

Based on the PK and PD challenges noted, we believe
that further clinical studies evaluating impact of anti-
fungal PK/PD parameters on outcome such as mortal-
ity are warranted and of crucial importance, especially
studies that sample during the peri-operative phase
during surgical intervention. This observation implies
that antifungal therapy should commence before sur-
gery, which is not always the case because of the diag-
nostic difficulties associated with identifying IAC [143].
Indeed, in the AMARCAND-2 study, antifungal ther-
apy was started after Candida documentation in 70%
of the patients, thus noting that few patients received
antifungal at the onset of IAC [88]. Performing PK/
PD analysis during and after surgery would allow to
describe important fluctuations in antifungal expo-
sure, some of which may impact on patient outcomes.
Certainly, the identification of critically ill patients
with intra-abdominal infection who then develop IAC
remains a challenge [144, 145]. The future consensus
definition of IAC from the FUNDICU project [146] is
eagerly awaited and would certainly help identifying
the right population.

An additional difficulty when addressing clinical out-
come such as mortality in critically ill patients with IAC
is related to the Candida itself [147-149]. Although the
presence of Candida in peritoneal samples is associ-
ated with poor outcomes [150], other studies have been
inconsistent [151]. This may be due to whether the Can-
dida isolated is a true pathogen responsible for mor-
tality. Indeed, the pathogenicity of Candida has been
questioned, with suggestion that it may be dependent on
the clinical situation and/or underlying condition of the
patient [152—154].

In the interim of obtaining more robust PK/PD data
linked to patient outcomes, using antifungal TDM in
critically ill patients with IAC, especially in cases with
high prevalence of non-albicans species, should be advo-
cated. In the absence of clear recommendations specifi-
cally for IAC in critically ill patients [52], and based on
available PK/PD data [48, 57, 73, 74], we suggest trough
concentrations between 10 and 20 mg/L for fluconazole,
and 1 to 10 mg/L for echinocandins. Further studies aim-
ing to evaluate these therapeutic ranges in critically ill
patients are, however, required.

It is noteworthy that data regarding antifungal dose
optimization using dosing software are scarce. In inva-
sive candidiasis, only one study has been reported. Bayes-
ian analysis using a limited sampling strategy has been
evaluated for anidulafungin using data from 20 criti-
cally ill patients and showed reasonable prediction [69].
Given that use of TDM in combination with dosing soft-
ware may become more common practice in the ICU,
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assessment of these dose optimization interventions is a
future consideration.

Conclusion

Due to the specific pathophysiology and associated inter-
ventions, IAC must be considered differently compared
to other forms of invasive candidiasis such as candi-
demia. High-quality PK/PD studies are required to better
describe the rate of antifungal target attainment in both
plasma and peritoneal fluid, during and after the surgery,
and when the patient is transferred to the ICU. The lack
of intra-operative data is a current weakness. Proposed
PK/PD targets, derived mostly from animal models,
have yet to be validated in the critically ill population. To
study the impact of antifungal PK/PD target attainment
on clinical outcomes, larger sample sizes and multicen-
tre studies are needed. In the meantime, antifungal TDM
in critically ill patients with IAC should be considered,
especially in cases of high prevalence of non-albicans
species or when fluconazole is prescribed. Regarding the
interest in new antifungals, studies involving critically ill
patients coupled with rigorous PK/PD analysis are war-
ranted before a more widespread use.

Abbreviations
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