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Abstract 

Background  Pulse pressure and stroke volume variation (PPV and SVV) have been widely used in surgical patients 
as predictors of fluid challenge (FC) response. Several factors may affect the reliability of these indices in predicting 
fluid responsiveness, such as the position of the patient, the use of laparoscopy and the opening of the abdomen 
or the chest, combined FC characteristics, the tidal volume (Vt) and the type of anesthesia.

Methods  Systematic review and metanalysis of PPV and SVV use in surgical adult patients. The QUADAS-2 scale 
was used to assess the risk of bias of included studies. We adopted a metanalysis pooling of aggregate data from 5 
subgroups of studies with random effects models using the common-effect inverse variance model. The area 
under the curve (AUC) of pooled receiving operating characteristics (ROC) curves was reported. A metaregression 
was performed using FC type, volume, and rate as independent variables.

Results  We selected 59 studies enrolling 2,947 patients, with a median of fluid responders of 55% (46–63). The 
pooled AUC for the PPV was 0.77 (0.73–0.80), with a mean threshold of 10.8 (10.6–11.0). The pooled AUC for the SVV 
was 0.76 (0.72–0.80), with a mean threshold of 12.1 (11.6–12.7); 19 studies (32.2%) reported the grey zone of PPV 
or SVV, with a median of 56% (40–62) and 57% (46–83) of patients included, respectively. In the different subgroups, 
the AUC and the best thresholds ranged from 0.69 and 0.81 and from 6.9 to 11.5% for the PPV, and from 0.73 to 0.79 
and 9.9 to 10.8% for the SVV. A high Vt and the choice of colloids positively impacted on PPV performance, especially 
among patients with closed chest and abdomen, or in prone position.

Conclusion  The overall performance of PPV and SVV in operating room in predicting fluid responsiveness is moder-
ate, ranging close to an AUC of 0.80 only some subgroups of surgical patients. The grey zone of these dynamic indices 
is wide and should be carefully considered during the assessment of fluid responsiveness. A high Vt and the choice 
of colloids for the FC are factors potentially influencing PPV reliability.
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Introduction
Fluid administration in the operating room is a cor-
nerstone of perioperative hemodynamic optimization 
[1–4], and its titration is obtained by adopting the fluid 
challenge (FC) to assess preload dependency and avoid 
fluid overload. In patients under mechanical ventilation, 
dynamic indices such as stroke volume variation (SVV) 
and pulse pressure variation (PPV) reliably predict the 
effect of FC because the fixed and repetitive inspiratory 
and expiratory pressure changes affect right ventricle’s 
preload, afterload and, hence, stroke volume (SV).

In the last decade, different aspects of the use of PPV 
and SVV in the operating room have been further inves-
tigated, providing clinically relevant implications. First 
of all, PPV and SVV reliability is affected by specific 
validity criteria including a tidal volume (Vt) > 8  ml/kg, 
a normal right ventricle’s function, the absence of heart 
arrythmias, an heart rate/respiratory rate ratio > 3.6 and 
an unimpaired respiratory mechanics [5–7], becom-
ing clinically useful only below or above a grey zone of 
uncertainty [8]. The majority of these criteria are usually 
respected in the operating room, with the exception of a 
protective Vt, which seems to be associated with better 
outcomes [9] and is now suggested as standard ventila-
tion in the operating room [10]. This is clinically mean-
ingful, since reducing the average Vt adopted in the 
operating room, also the threshold adopted in the past 
to stratify fluid responders and non-responders (i.e. 13% 
[11]) may be changed.

On the contrary, in the operating room other factors 
associated to the type of surgery may impact a lot on 
PPV and SVV reliability, such as the type of anesthesia 
adopted, the position of the patient, the use of laparos-
copy (LPS) and the opening of the abdomen or the chest.

As second, the impact of different determinants of the 
FC itself (i.e. the volume, the rate, the type of fluid used 
and the threshold to define fluid responsiveness [12–14]), 
have been further investigated and, as consequence, the 
value of PPV and SVV in studies adopting different types 
of FC may be inconsistent.

We, therefore, conducted a comprehensive systematic 
review and metanalysis with the primary aim of investi-
gating the performance of PPV and SVV in different sur-
gical setting, stratifying the patients according to chest/
abdomen opening, intraoperative position, and the use of 
LPS.

Secondarily, we assessed the impact of other poten-
tial factors influencing the reliability of these indices in 

predicting fluid responsiveness in mechanically venti-
lated patients in the different surgical settings, specifi-
cally FC characteristics, the modality of ventilation and 
the type of anestestia.

Material and methods
We adhered to the Preferred Reporting Items for System-
atic Reviews and Meta-Analysis – Protocols (PRISMA-P) 
guidelines [15] (Additional file  1: Table  S1). The proto-
col of this study was prospectively registered with the 
International Prospective Register of Systematic Reviews 
(PROSPERO) (CRD42022379120).

Data sources and search strategy
A systematic literature search was performed including 
PUBMED® and EMBASE® and the Cochrane Controlled 
Clinical trials register  databases, by using the following 
terms: ’pulse pressure variation’ OR ’stroke volume varia-
tion’ OR ’fluid responsiveness’ AND (surgery) OR (surgi-
cal patients) (Additional file 1: Table S2).

Articles written in English, enrolling at least 10 adult, 
mechanically ventilated patients undergoing elective sur-
gery and published from 1st January 2000 until 1st March 
2023 in indexed scientific journals were considered. Edi-
torials, commentaries, letters to editor, opinion articles, 
reviews, and meeting abstracts were excluded. Refer-
ences of selected papers, review articles, commentaries, 
and editorials on this topic were also reviewed to iden-
tify other studies of interest missed during the primary 
search. When multiple publications of the same research 
group/center described potentially overlapping cohorts, 
the most recent publications were selected.

We included only those studies clearly stating the 
threshold for defining fluid responsiveness as SV (or its 
surrogates) increase above a predefined limit. Articles 
including data collected in the postoperative period were 
excluded, while data recorded in the post-operative ICU 
just after the end of the surgery were included. Finally, we 
excluded studies performed during liver transplantation, 
in pediatric population and during pregnancy/labor.

Data abstraction
Three couples of examiners independently performed 
the evaluation of titles and abstracts. The articles were 
then subdivided into three subgroups: “included” and 
“excluded” (if the two examiners agreed with the selec-
tion) or “uncertain” (in case of disagreement). In the case 
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of “uncertain” classification, discrepancies were resolved 
by further examination performed by two expert authors 
(A.M. and M.Ce.). We used a standardized electronic 
spreadsheet (Microsoft Excel, V 14.4.1; Microsoft, Red-
mond, WA) to extract data from all included studies, 
recording: trial characteristics (i.e. number of centers, 
country), patient population (i.e. demographics, type 
of surgery, baseline illness severity scores), intraopera-
tive monitoring and interventions (i.e. mechanical ven-
tilation characteristics, monitoring technology used, FC 
characteristics).

Risk of bias assessment in the included studies
Assessment of risk of bias in the included studies
The QUADAS-2 scale was used to assess the risk of bias 
of the included studies [16]. Two expert authors (A.M. 
and M.Ce.) independently examined the studies using 
predefined criteria, which are reported in the Additional 
file 1: Table S4:

For each criterion, the risk of bias was judged as high (3 
points), unclear (2 points) or low (1 point). If the answers 
to all signaling questions for a domain were “yes,” then 
risk of bias was judged as “low”. If any signaling question 
was answered “no,” the potential risk of bias was defined 
as indicted in Additional file  1: Table  S4. The sum of 
these points was used to calculate the global risk of bias. 
Studies were included in the highest risk of bias group 
if the sum of the points obtained by the risk of bias and 
applicability judgment assessment, was higher than the 
median value for all the studies [17].

Statistical analysis
Descriptive analysis was carried out: the statistical unit 
of observation for all the selected variables was the sin-
gle study and not the patient. Quantitative variables were 
summarized with means (standard deviations, SD) or 
medians (inter-quartile ranges, IQR) according to their 
distribution.

Patients were stratified in five main groups, according 
to the surgical characteristics at inclusion: (1) Patients 
enrolled with closed abdomen and chest; (2) Patients 
enrolled with closed abdomen and open chest (includ-
ing sternotomy and thoracotomy); (3) Patients enrolled 
with open abdomen and closed chest; (4) LPS; (5) Prone 
position.

We adopted a metanalysis pooling of aggregate data 
with random effects models using the common-effect 
inverse variance model. The area under the curve (AUC) 
of pooled receiving operating characteristics (ROC) 
curves was reported with 95% confidence intervals 
(95%CI). In-between study heterogeneity was assessed 
with the I2 statistic. According to Higgins et  al., I2 val-
ues around 25%, 50%, and 75% represented no, low, 

moderate, and high heterogeneity [18]. Unless stated oth-
erwise, we considered the number of the FC performed 
equal to the number of patients included in the study. 
In the studies comparing two different surgical settings 
in the same population (i.e., open chest/closed chest, 
supine/prone etc.) data of the two subgroups of patients 
were separately analyzed for the purpose of the ROC 
curve analysis. Missing data in AUC reporting was con-
sidered an exclusion criterion from metanalysis.

For each of these five subgroups we performed a 
meta-regression considering the following independent 
variables: 1) Tidal volume (Vt) ≥ 8 ml/kg; 2) Positive end-
expiratory pressure (PEEP) level (i.e., PEEP = 0 cmH2O; 
PEEP = 0–5 cmH2O; PEEP > 5 cmH2O); 3) total intrave-
nous anesthesia (TIVA); 4) FC using colloids vs crystal-
loids; 5) volume of FC administration > 4 ml/kg; 6) rate of 
FC administration > 15 min).

In case of mixed populations (i.e. receving TIVA anes-
thesia/alogenates or undergoing LPS /laparotomy), the 
subgroup including at least 75% of the population was 
used for the final classification of the study.

The statistical analysis was performed using the soft-
ware STATA® version 17 (StataCorp, College Station, 
TX, USA) and Medcalc (Software 8.1.1.0; Mariakerke, 
Belgium). For all comparisons, we considered significant 
p values < 0.05.

Results
The electronic search identified 3,300 potentially relevant 
titles and 59 full-text manuscripts were finally selected. A 
detailed description of the selection process is provided 
in Fig.  1. Overall, the included studies enrolled 2,947 
patients with a median age of 61 (55–65), and 59% (46–
71) were males. The median number of patients enrolled 
per study was 40 (26–52), overall receiving 3,870 FCs 
with a median number of FCs administered of 40 (25–53) 
for each study and a median of fluid responders of 55% 
(46–63), ranging from 26.9 [19] to 91.4% [20], and col-
loids have been used in 41 studies (68.3%) (Table 1).

Preoperative comorbidities were reported for 2280 
patients (76.1%), with cancer diagnoses being the most 
represented (32.7%). Surgery type was reported for 2932 
patients (99.5%), with neurosurgical operations (26.4%) 
being the most prevalent (Additional file  1: Table  S3). 
Seven studies (11.6%) enrolled only patients undergo-
ing LPS, in 25 (42.4%) the patients received halogenate/
opiate anesthesia, while in  23 (39.0%) TIVA and in the 
remaining 11 studies (18.6%) the type of anesthesia was 
mixed or unspecified.

Overall, the median (IQR) QUADAS-2 score of the 
included studies was 9 (7 -10) and 18 studies (30.5%) 
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were classified in the subgroup with the highest risk of 
bias (Additional file 1: Table S5).

Overall pooled AUC of PPV and SVV in the included studies
The pooled AUC for the PPV obtained from 52 stud-
ies was 0.77 (0.73–0.80), with a mean threshold of 10.8 
(10.6–11.0) (I2 = 92.2%) (Additional file 1: Table S6).

The pooled AUC for the SVV obtained from 36 stud-
ies was 0.76 (0.72–0.80), with a mean threshold of 12.1 
(11.6–12.7) (I2 = 88.3%) (Additional file 1: Table S7).

Overall, 19 studies (32.2%) reported the grey zone of 
PPV or SVV, with a median of 56% (40–62) and 57% 
(46–83) of patients included in this range of uncer-
tainty, respectively.

Fig. 1  Flow of the studies
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Pooled AUC and grey zone in the different PPV subgroups

1.	 In the studies enrolling patients with closed chest and 
abdomen, the pooled AUC for PPV was 0.79 (95%CI 
0.73–0.84) for a threshold of 10.9% (10.5–11.2) and 
a I2 of 92.7%. (Additional file 1: Figure S1); 7 studies 
[21–27] reported a median of 61.8% of patients (52–
75) included in the grey zone of PPV, with a median 
low value of 6% (5–8) and a high value of 12% (11–
17).

2.	 In the studies enrolling patients with closed chest and 
open abdomen, the pooled AUC for PPV was 0.79 
(95%CI 0.71–0.88) for a threshold of 11.5% (11.3–
11.6) and a I2 of 88.2%. (Additional file 1: Figure S2); 
6 studies [8, 25, 26, 28–32] reported a median of 
43.5% (36–50) included in the grey zone of PPV, with 
a median low value of 7% (5–10) and a high value of 
14% (12–25).

3.	 In the studies enrolling patients with closed abdomen 
and open chest, the pooled AUC for PPV was 0.69 
(95%CI 0.59–0.78) for a threshold of 6.9% (6.7–7.11) 
and a I2 of 68.8%. (Additional file  1: Figure S3); 1 
study [33] reported 86.0% of patients included in the 
grey zone of PPV, with a low value of 5% and a high 
value of 19%.

4.	 Studies including patients undergoing LPS showed 
a pooled PPV AUC of 0.74 (95%CI 0.64–0.83), with 
a pooled threshold of 11.3% (10.6 – 11.9) and a I2 
of 60.7%. (Additional file  1: Figure S4); 1 study [34] 
reported 26% of patients included in the grey zone of 
PPV, and 2 studies [34, 35] a median low value of 6% 
(6–7) and a high value of 15% (9–21).

5.	 In studies including patients in prone position, the 
pooled PPV AUC was 0.78 (95%CI 0.69–0.88), with 
a pooled threshold of 11.2% (10.9–11.5) and a I2 of 
84.9%. (Additional file  1: Figure S5); 2 studies [36, 
37] reported a median of 60.0% (58–62) included in 
the grey zone of PPV, with a median low value of 6% 
(5–6) and a high value of 11% (10–11),

Pooled AUC and grey zone in the different SVV subgroups

1.	 In the studies enrolling patients with closed chest and 
abdomen, the pooled AUC for SVV was 0.76 (95%CI 
0.69–0.82) for a threshold of 10.7% (10.4–10.9) and a 
I2 of 78.4%. (Additional file 1: Figure S6); 1 study [26] 
reported 88.5% of patients included in the grey zone 
of SVV, while 2  studies [30, 31] reported a median 
low value of 5% (3–7) and a high value of 15% (13–
16).

2.	 In the studies enrolling patients with closed chest 
and open abdomen, the pooled AUC for SVV was 

0.79 (95%CI 0.70–0.88) for a threshold of 10.1% 
(9.8–10.5) and a I2 of 86.2%. (Additional file 1: Figure 
S7); 3 studies [28, 30, 31] reported a median of 46.0% 
(33.0–57.0) included in the grey zone of SVV, with a 
median low value of 5% (4–6) and a high value of 12% 
(11–15).

3.	 In the studies enrolling patients with closed abdomen 
and open chest, the pooled AUC for SVV was 0.72 
(95%CI 0.57–0.87) for a threshold of 10.0% (9.8–10.2) 
and a I2 of 85.7%. (Additional file  1: Figure S8); 1 
study [33] reported 93.0% of patients included in the 
grey zone of SVV, with a low value of 5% and a high 
value of 18%.

4.	 Studies including patients undergoing LPS showed 
a pooled SVV AUC of 0.78 (95%CI 0.69–0.87), with 
a pooled threshold of 10.8% (10.4–11.3) and a I2 of 
64.4%. (Additional file  1: Figure S9); 1 study [34] 
reported 55.0% of patients included in the grey zone 
of SVV, while 3 studies [34, 35, 38] reported a median 
low value of 7% (3–13) and a high value of 13% 
(6–15).

5.	 In studies including patients in prone position, the 
pooled SVV AUC was 0.73 (95%CI 0.64–0.83), with 
a pooled threshold of 10.2% (9.9–10.4) and a I2 of 
74.9%. (Additional file  1: Figure S10); 1 study [37] 
reported 66% of patients included in the grey zone of 
SVV, with a median low value of 6% and a high value 
of 14%.

Data about pooled ROC and grey zones of the consid-
ered subgroups for PPV and SVV are summarized in the 
Table 2.

Metaregression
As shown in Table 3, the pooled AUC for PPV was posi-
tively affected by the by Vt ≥ 8  ml/kg (p < 0.001) and by 
the use of colloids for the FC (p < 0.001) in the group of 
studies with closed chest and abdomen; the Vt ≥ 8  ml/
kg (p < 0.001) was also associated to increased AUC in 
studies enrolling prone patients. The AUCs of these sub-
groups are reported in the Table 4. The was no effect of 
any of the considered variables on the AUC of SVV.

Discussion
This systematic review and metanalysis evaluated the 
PPV and SVV performance in different surgical settings, 
updating previous papers and focusing on the role of 
potential factors that may be associated with better per-
formance of the indices for predicting fluid responsive-
ness. Our data may be summarized as follows: (1) the 
overall performance of PPV and SVV in operating room 
in predicting fluid responsiveness is moderate, ranging 
close to an AUC of 0.80 only in non-LPS surgery, with 
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closed chest, suggesting caution in the interpretation 
of this indices; (2) overall, the best threshold of PPV is 
11%, while for the SVV is 10%. However, the minority 
of the studies reporting the grey zone showed that the 
majority of patients are patients included in this range 
of uncertainty, respectively; (3) a high Vt and the choice 
of colloids, may impact positively on PPV performance, 

especially among patients with closed chest and abdo-
men, or in prone position.

PPV and SVV have been widely investigated as indices 
to guide fluid administration, but also as targets of a goal-
directed therapy [22]. In the operating room, most of the 
validity criteria affecting PPV and SVV reliability (such as 
low tidal volume, heart rate/respiratory rate ratio  < 3.6, 

Table 2  Summary of pooled AUCs and grey zones of PPV and SVV in the considered subgroups

Complete data analysis is reported in the Results section. AUC​ Area under receiver operator characteristic curve, PPV Pulse pressure variation, SVV Stroke volume 
variation L Low value of grey zone, H High value of grey zone, LPS Laparoscopy

Subgroup PPV SVV

Pooled AUC​ Threshold (%) Grey zone L Grey zone H Pooled AUC​ Threshold Grey zone L Grey zone H

Closed Chest and Abdomen 0.79 10.9 6 12 0.75 10.7 5 15

Closed Chest and = pen Abdo-
men

0.79 11.5 7 14 0.79 10.1 5 12

Open Chest and Closed Abdo-
men

0.69 6.9 5 19 0.72 10.0 5 18

LPS 0.74 11.3 6 15 0.78 10.8 7 13

Prone 0.78 11.2 6 11 0.73 10.2 6 14

Table 3  Metaregression of PPV and SVV ROC curves in the considered subgroups of studies

Bold variables indicates statistically significant values

PPV Pulse pressure variation, SVV Stroke volume variation, ROC Receiver operator characteristic curve, PEEP Positive end-expiratory pressure, VT Tidal volume, TIVA 
Total intravenous anesthesia, NA Non-applicable for collinearity; ref, reference, ml/Kg Milliliters per kilogram, min Minutes. Data are expressed as coefficient of 
metaregression (p value); ref, reference

PPV Closed Abdomen 
Closed Chest
(N = 20)

Open Abdomen 
Closed Chest
(N = 8)

Closed Abdomen 
Open Chest
(N = 9)

Prone
(N = 9)

Laparoscopy
(N = 6)

PEEP (cmH2O)

0 Ref Ref Ref Ref Ref

0–5 − 0.08 (p = 0.39) − 0.15 (p = 0.35) 0.05 (p = 0.69) − 0.09 (p = 0.38) − 0.16 (p = 0.31)

 > 5 − 0.20 (p = 0.09) − 0.24 (p = 0.19) NA NA − 0.20 (p = 0.34)

VT > 8 ml/Kg 0.20 (p < 0.001) 0.02 (p = 0.86) 0.07 (p = 0.55) 0.22 (p = 0.03) − 0.14 (p = 0.31)

TIVA 0.00 (p = 0.97) 0.14 (p = 0.26) NA 0.06 (p = 0.61) − 0.07 (p = 0.65)

COLLOIDS 0.18 (p < 0.001) − 0.03 (p = 0.76) − 0.06 (p = 0.70) 0.11 (p = 0.31) 0.03 (p = 0.86)

Volume > 4 ml/kg 0.11 (p = 0.05) 0.13 (p = 0.22) NA 0.17 (p = 0.32) 0.17 (p = 0.14)

Rate ≥ 15 Min 0.02 (p = 0.89) NA − 0.07 (p = 0.58) − 0.08 (p = 0.63) − 0.07 (p = 0.65)

SVV Closed abdomen 
Closed chest
(N = 9)

Open abdomen 
Closed chest
(N = 8)

Closed abdomen 
Open chest
(N = 6)

Prone
(N = 7)

Laparoscopy
(N = 6)

PEEP (cmH2O)

0 Ref Ref Ref Ref Ref

0–5 − 0.06 (p = 0.56) − 0.09 (p = 0.38) 0.25 (p = 0.29) − 0.03 (p = 0.78) 0.02 (p = 0.87)

 > 5 − 0.17 (p = 0.18) − 0.10 (p = 0.51) NA NA − 0.22 (p = 0.22)

VT > 8 ml/Kg 0.07 (p = 0.34) 0.10 (p = 0.34) 0.22 (p = 0.19) 0.17 (p = 0.07)) 0.02 (p = 0.91)

TIVA − 0.00 (p = 0.95) 0.14 (p = 0.24) − 0.25 (p = 0.29) 0.14 (p = 0.15) − 0.23 (p = 0.09)

COLLOIDS 0.12 (p = 0.06) − 0.01 (p = 0.91) NA 0.13 (p = 0.21) − 0.17 (p = 0.07)

Volume > 4 ml/kg 0.12 (p = 0.08) 0.04 (p = 0.65) NA 0.11 (p = 0.33) 0.01 (p = 0.91)

Rate ≥ 15 Min 0.02 (p = 0.82) NA − 0.22 (p = 0.19) 0.00 (p = 0.98) − 0.23 (p = 0.09)
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presence of spontaneous breathing activity, low respira-
tory compliance, right ventricle dysfunction) occur less 
frequently compared to critically ill patients. This would, 
in principle, improve their performance as tests for fluid 
responsiveness. The role of Vt has also been extensively 
investigated. In 2009 Marik et  al. reported on an AUC 
of 0.93 (95% CI, 0.92–0.94) for the PPV in a small sub-
group of surgical studies adopting a mean Vt > 8  ml/kg 
[39]. In 2011 Zhang et al. reported an AUC of 0.94 (95% 
CI, 0.907–0.945) for the SVV in 8 surgical studies [40], 
decreasing to 0.84 by excluding only one study on 20 
patients [41]. Similarly, Messina et al. in 2018 reported an 
AUC of 0.86 for PPV (10 studies) and of 0.87 for SVV (16 
studies) in surgical trials with a mean Vt of 8 ml/kg [11]. 
The metaregression showed that the only AUCs of the 
PPV in the subgroups of patients with closed chest and 
abdomen or in prone position were positively affected by 
the intraoperative use of a Vt ≥ 8 ml/kg. Although the use 
of an intraoperative lung-protective ventilation strategy 
is associated with a better outcome [9] and is now sug-
gested as standard practice in the operating room [10], 
this limits the assessment of fluid responsiveness in 
surgical patients by means of dynamic indices and, not 
surprisingly, pooling data from recent studies show an 
overall worse performance of PPV, as compared to the 
past.

Accordingly to the reduced Vt, also the thresholds of 
PPV and SVV should be reconsidered. Our results sug-
gest a best pooled threshold for PPV (11%) and SVV 
(10%) both lower than 13% proposed in the past [8]. 
However, these thresholds derived from ROC curve 
analysis may be scarcely useful in clinical practice, since 
it often falls within the grey zone of uncertainty. Consid-
ering the different subgroups, our results show that the 
range of PPV and SVV values included between the low-
est 5–7% and the highest of 12–19%, should be consid-
ered with caution, suggesting the use of other functional 
hemodynamic tests in surgical patients for enhancing the 
reliability of these dynamic indices [17].

The metaregression showed that the AUC of the PPV 
in the subgroups of patients with closed chest and abdo-
men was improved by the use of colloids (p < 0.001) and, 

potentially, by a FC volume > 4  ml/kg (borderline effect; 
p = 0.05). For the SVV, these two variables showed also 
borderline effects (p = 0.06 and p = 0.08, respectively). 
Recently, it has been demonstrated that at least 4 ml/kg 
should be infused to effectively challenge cardiac preload 
[14, 42]. Accordingly, reducing FC volume would impact 
on the identification of fluid responders and, in turn, on 
AUC magnitude. Colloids are still adopted in the oper-
ating room, and their different persistence in the intra-
vascular space may affect fluid responsiveness especially 
when the time of evaluation of FC is prolonged above 
10 min (when the effect of a crystalloid FC fades[13]).

Strenghts and limitations
To the best of our knowledge, this is the most updated 
and largest metanalysis on PPV and SVV use in the oper-
ating room. Our approach considered the physiologic 
characteristics of the surgical patients and not the spe-
cific type of surgery. This implies that the results may be 
applied to different settings (i.e. the subgroup with closed 
chest and abdomen may include neurosurgery, vascular 
non-abdominal surgery and otolaryngology surgery). 
Moreover, the meta-regression analysis enhanced specific 
variables potentially affecting PPV and SVV reliability.

Regarding the limitations, despite the minority of the 
studies (30.5%) were classified in the subgroup with the 
highest risk of bias, the QUADAS-2 score, however, as 
any other bias score, would not perfectly fit to the design 
of the included studies, and it has been adapted by the 
authors in some domain, considering clinical of physi-
ological variables potentially affecting FC outcome and, 
hence, ROC curve analysis.

Moreover, the heterogeneity of the AUCs obtained 
from of the analyzing data ranged from 43.5 to 88.2%, 
implying a significant variability in the population 
enrolled and data presentation. Again, this is, unfortu-
nately, a quite common problem in the field of hemo-
dynamic for either critically ill and surgical patients as 
previously shown in other papers [17, 43]. Overall, data 
obtained from the meta-regression should be considered 
with caution, due to the small number of studies included 
in some subgroup.

Table 4  Difference in the AUCs of the subgroups positively affected by the variables analyzed in the metaregression

PPV Pulse pressure variation, SVV Stroke volume variation, AUC​ Area under receiver operator characteristic curve, PEEP Positive end-expiratory pressure, VT Tidal 
volume, TIVA Total intravenous anesthesia, NA Non-applicable for collinearity, ref Reference, ml/Kg Milliliters per kilogram, min Minutes

Data are expressed as coefficient of metaregression (p value); ref, reference

Closed Chest and Closed Abdomen Prone patients

AUC of PPV AUC of PPV AUC of PPV

VT > 8 ml/Kg VT ≤ 8 ml/Kg Colloids YES Colloids NO VT > 8 ml/Kg VT ≤ 8 ml/Kg

0.88 (0.82–0.93) 0.69 (0.65 – 0.74) 0.86 (0.80–0.92) 0.70 (0.65 – 0.75) 0.85 (0.76–0.94) 0.64 (0.54 – 0.74)
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This is not a meta-analysis based on individual data and 
the assessment of fluid responsiveness has been evalu-
ated by different hemodynamic tools, including echocar-
diography, calibrated and uncalibrated machines.

The authors state some discrepancies between the final 
literature search, focused on PPV and SVV use in stud-
ies assessing the performance of these variables in pre-
dicting fluid responsiveness, and the original PROSPERO 
registration, which includes also randomized-controlled 
studies adopting PVV and SVV in the context of perio-
perative hemodynamic optimization. After an initial 
screening, it was clear that these studies should have 
been not included in the literature search, and the string 
has been modified, accordingly.

Conclusions
The overall performance of PPV and SVV in operating 
room in predicting fluid responsiveness is moderate, 
ranging close to an AUC of 0.80 only for some subgroups 
of surgical patients, with a best threshold of 11% and 
10%, respectively. Considering the different subgroups, 
the grey zone of these dynamic indices (from 5 to 7% and 
to 12 to 19%) is wide and should be carefully considered 
during the assessment of fluid responsiveness. A high Vt 
and the choice of colloids for the FC, may impact posi-
tively on the performance of the dynamic indices, espe-
cially among patients with closed chest and abdomen, or 
in prone position.
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