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Abstract

Background: Elevated catecholamine levels might be associated with unfavorable outcome after traumatic brain
injury (TBI). We investigated the association between catecholamine levels in the first 24 h post-trauma and
functional outcome in patients with isolated moderate-to-severe TBI.

Methods: A cohort of 174 patients who sustained isolated blunt TBI was prospectively enrolled from three Level-1
Trauma Centers. Epinephrine (Epi) and norepinephrine (NE) concentrations were measured at admission (baseline),
6, 12 and 24 h post-injury. Outcome was assessed at 6 months by the extended Glasgow Outcome Scale (GOSE)
score. Fractional polynomial plots and logistic regression models (fixed and random effects) were used to study the
association between catecholamine levels and outcome. Effect size was reported as the odds ratio (OR) associated
with one logarithmic change in catecholamine level.

Results: At 6 months, 109 patients (62.6%) had an unfavorable outcome (GOSE 5-8 vs. 1-4), including 51 deaths
(29.3%). Higher admission levels of Epi were associated with a higher risk of unfavorable outcome (OR, 2.04, 95% Cl:
1.31-3.18, p=0.002) and mortality (OR, 2.86, 95% Cl: 1.62-5.01, p =0.001). Higher admission levels of NE were
associated with higher risk of unfavorable outcome (OR, 1.59, 95% Cl: 1.07-2.35, p=0.022) but not mortality (OR, 1.
45, 95% Cl: 0.98-2.17, p=0.07). There was no relationship between the changes in Epi levels over time and
mortality or unfavorable outcome. Changes in NE levels with time were statistically associated with a higher risk of

mortality, but the changes had no relation to unfavorable outcome.

Conclusions: Elevated circulating catecholamines, especially Epi levels on hospital admission, are independently
associated with functional outcome and mortality after isolated moderate-to-severe TBI.
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Background

Traumatic brain injury (TBI) is the leading cause of dis-
ability and mortality among young adults worldwide,
with a major socio-economic impact and costs of more
than US$60 billion per year in the USA alone [1-3].
Trauma elicits a complex systemic response, character-
ized by profound alterations in neuroendocrine and
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immune function geared toward restoring homeostasis
[4]. Activation of the hypothalamic-pituitary-adrenal axis
and the sympathetic nervous system (SNS) leads to the
secretion of glucocorticoids and catecholamines respect-
ively, along with complex neuroimmune interactions [4].
These changes are recognized as central pathways in the
pathogenesis of post-traumatic complications [4, 5].
Traumatic brain injury, in particular, leads to immediate
and profound SNS activation with massive release of cat-
echolamines [epinephrine (Epi), norepinephrine (NE)]
[6]. While the adrenergic response is essential for sur-
vival — hypotension doubles mortality of patients with
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severe TBI [7] — it also increases oxygen demand by the
heart and brain causing cardiovascular dysfunction and
may lead to further brain damage. We hypothesized that
in patients with moderate-to-severe TBI, elevated levels
of circulating catecholamines measured on admission
are associated with unfavorable 6-month functional out-
come. Therefore, we conducted a prospective, observa-
tional cohort study to evaluate the association between
circulating catecholamine levels and functional outcome
after isolated blunt moderate-to-severe TBI.

Methods

Selection of participants

A prospective, observational cohort study was conducted
in three Level-1 Trauma Centers, two centers in Canada
and one center in USA, from November 2011 to Sep-
tember 2013. Inclusion criteria: (a) adult patients (age >
16 years); (b) isolated blunt moderate-to-severe TBI,
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defined by a Glasgow Coma Scale [8] (GCS) score <13;
and (c) non-head Abbreviated Injury Scores (AIS)<2.
Exclusion criteria included: (a) elapsed time between in-
jury and admission to the Emergency Department (ED)
exceeding 3 hours; (b) age <16 years; (c) pregnancy; (d)
absence of vital signs prior to ED admission; and (e)
penetrating head injury.

Figure 1 illustrates the study enrollment process
and follow-up according to the STROBE statement:
guidelines for reporting observational studies [9].
From September 2011 to June 2013, 3264 patients
were screened in two trauma centers in Toronto
[2216 at Sunnybrook Health Sciences Centre (SHSC),
1048 at St. Michael’s Hospital (SMH)] and from Janu-
ary 2013 to March 2013, 1750 patients were screened
at the LA County General Hospital and the University
of Southern California Medical Center (LA County).
Two thousand and ninety-five patients did not meet

-

PATIENTS SCREENED
SHSC - 2216
SMH — 1048
LA - 1750

FINAL ENROLLED
SHSC - 121
SMH - 55
LA-13

Excluded Post Enrollment
1 patient < 16 years-old
5 patients with penetrating TBI

and NE levels
WC -3 at SHSC, and 2 at LA

4 outliers with discrepantly high Epi

~N

DID NOT MEET STUDY
CRITERIA/EXCLUDED

SHSC — 2095
SMH - 993
LA— 1737

Lost Follow-up

INCLUDED IN THE
FINAL ANALYSIS
174 patients

Unfavorable outcome:
- 109 patients (62.6%)
51 deaths (29.3%)
Favorable outcome:
- 65 patients (37.4%)

Fig. 1 Flow diagram of the screening process. LA Los Angeles County General Hospital and the University of Southern California Medical Center,
SHSC Sunnybrook Health Sciences Centre, SMH St. Michael's Hospital, WC withdrawal of consent

2 patients (1.1%)
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the inclusion criteria at SHSC, 978 at SMH and 1737
at LA County. The final cohort was of 189 patients
with isolated moderate-to-severe TBI enrolled in the
study (121 patients from SHSC, 55 patients from
SMH and 13 patients from LA County). In total 15
patients were excluded from the final analysis: one
patient was excluded later after enrollment, because it
was noticed that the age was less than 16 years old;
three patients at SHSC and four patients at LA
County were removed from the cohort due to with-
drawal of consent post enrollment, by the patient’s
power of attorney. Additionally, five patients with
penetrating TBI, and four outliers with discrepantly
high catecholamine levels were also excluded. The
outliers had levels that were above the upper limits of
detection of the assay. Two patients were not located
using previous contact information and within the
provincial registries, and we could not assess their
long-term outcome.

Control group: following informed consent, peripheral
venous blood samples were also collected once from 50
healthy volunteers [age 30.3 + 7.7 years (mean + SD)] using
a 21-gauge needle following a resting period of 30 minutes.
Their catecholamine levels were used as the control/base-
line catecholamine levels. Control participants were re-
cruited locally by advertisement and excluded if they had
any previous history of TBI or co-morbidities.

Procedures and data collection

Clinical, laboratory and imaging data were collected
upon hospital arrival and throughout the hospital
stay. It included baseline demographics, trauma infor-
mation [i.e., mechanism of injury, elapsed time from
the injury to hospital, Injury Severity Score (ISS), Ab-
breviated Injury Scores (AIS), computed tomography
(CT) Marshall Classification [10] (Additional file 1:
Table S1), laboratory values, neurological and clinical
status, and past medical history]. A complete list of
procedures and data collection can be found in the
Additional file 1.

Sample collection and preservation

Venous blood samples for plasma catecholamine ana-
lyses were drawn into 10-mL K,EDTA vacutainers
(Vacutainer, Becton Dickinson, Rutherford, NJ, USA)
as soon as possible after admission to the trauma
room (baseline) and again at 6, 12 and 24 h post ad-
mission. Specimens were immediately centrifuged at
1600 x g for 15 minutes (4 °C), the plasma separated
into aliquots and frozen at -70 °C until analyses. The
teams caring for the patients were blinded to the re-
sults of all research assays and consequently the re-
sults were not available for treatment decisions.
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Determination of plasma catecholamines concentrations
Plasma Epi and NE concentrations (pmol/L) were deter-
mined from duplicate samples using a direct competitive
enzyme immunoassay method according to the manu-
facturer’s instructions (Bi-CAT EIA, Alpco Diagnostics,
Salem, NH, USA). Briefly, plasma Epi and NE were
extracted by wusing a cis-diol-specific affinity gel,
acylated and then derivatized enzymatically into N-
acylmetanephrine and N-acylnormetanephrine, respect-
ively. Antibody bound to the solid-phase catecholamines
was detected by an anti-rabbit IgG-peroxidase conjugate
using tetramethylbenzidine as a substrate. This coloro-
metric reaction was terminated by the addition of 0.25 M
H,SO4 and the absorbance measured at 450 nanometers
(nm) and 630 nm using a multi-detection microplate
reader (VICTOR 3, PerkinElmer, Waltham, MA, USA).
Quantification of unknown samples was achieved by com-
paring their absorbance with a reference curve prepared
with known standard concentrations included in the kit.
Detected antibody was inversely proportional to catechol-
amine concentrations of the sample.

First 24-hour events

All significant clinical/surgical events during the first
24 hours were recorded, including any treatment with
vasoactive drugs, neurosurgical procedures, hypotension
and intracranial hypertension episodes, respiratory fail-
ure, changes in chest radiography, electrocardiogram
and head CT.

Outcome assessment

The primary outcome was the association between cir-
culating catecholamine levels measured on hospital ad-
mission with mortality and functional outcome assessed
by the extended Glasgow Outcome Scale (GOSE) at
6 months. The outcome assessment was performed by
structured telephone interviews [11, 12] with the patient
or his/her caregiver. The interviewers were blinded to
the patients’ catecholamine levels. For the analysis,
GOSE outcome was dichotomized into favorable (GOSE
5-8) and unfavorable (GOSE 1-4) outcome (Additional
file 1: Table S2).

Statistical analyses

Demographic and clinical characteristics were summa-
rized to compare patients who experienced unfavor-
able outcome with those who had favorable outcome
using mean * standard deviation (SD) for continuous
variables, or frequency distributions and percentages
for categorical variables. Statistical differences were
assessed with one-way ANOVA, Mann—Whitney U or
X? tests as applicable. Bar charts were plotted to
examine changes in catecholamine levels over the first
24 hours post-injury. Fractional polynomial plots were



Rizoli et al. Critical Care (2017) 21:37

obtained to investigate the relation of catecholamine
levels to severity of brain injury on CT scans based
on the Marshall scoring system. The association be-
tween baseline catecholamine levels and outcome at
6-month follow-up was investigated by fitting fixed-
effects logistic regression models. An adjusted analysis
accounted for the core prognostic factors of TBI
including age, GCS score, pupillary reactivity and
Marshal CT score of brain injury [10]. Logarithmic
transformation was performed to correct for the ex-
treme skewness in the distribution of catecholamine
values prior to inclusion in the regression models.
Furthermore, we investigated the effect of temporal
changes in catecholamine levels on outcome using a
random-effects logistic regression model to disaggre-
gate the within-subject effect of catecholamine, which
reflects the effect of the temporal changes in cat-
echolamine levels, from the between-subject effect of
catecholamine. Effect size was reported as the odds

Table 1 Baseline characteristics of the study cohort
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ratio (OR) associated with one logarithmic change in
catecholamine level. Statistical significance was set at
a p value <0.05. All data were analyzed using GraphPad
Prism Version 6.0d (GraphPad Inc., San Diego, CA, USA)
and Stata version 13.1 (StataCorp, College Station,
TX, USA).

Results

The demographic, clinical, and outcome variables of the
participants are shown in Table 1. One hundred and
seventy-four patients with isolated blunt TBI were en-
rolled into the study. The mean age of the patients was
47.5+21.1 years; most were men (75%). The mean time
from injury to hospital admission was 80 + 66 minutes.

Temporal changes in catecholamine levels over the first
24 h post-injury

Figure 2 is a bar plot of temporal changes in cat-
echolamine levels over the first 24 h post-injury,

Characteristic All patients

Outcome at 6 months p value

Favorable (GOSE 5-8)

Unfavorable (GOSE 1-4)

Demographics

Frequency 174 65 (37.4) 109 (62.6) -

Age (years) 475+212 375+165 537+214 <0.001

Male 130 (74.7) 53 (40.8) 77 (59.2) 0.110
Clinical characteristics

Time to ED (min) 80.2+66.0 872+669 76.1£654 0218

GCS on admission 59+31 73+%32 51+27 <0.001

ISS on admission 244+116 179+98 284+108 <0.001

AlS head on admission 4111 35+1.2 45+08 <0.001
Marshall score

| 27 (15.5) 19 (704) 8 (29.6) -

I 82 (47.1) 35 (42.7) 47 (57.3) -

Il 13 (7.5) 3(23.1) 10 (76.9) -

Y 30 (17.2) 2 (6.7) 28 (93.3) -

\% 21.(12.1) 6 (28.6) 15 (71.4) -

VI 1(0.6) 0 (0.0) 1(100.0) -
SBP (mmHg) 1404 +£32.2 1409+ 284 140.1 £ 346 0.861
Sa0, <92% 7 (4.0) 3 (429) 4(57.1) 0.759
Mechanical ventilation 144 (82.8) 45 (31.2) 99 (68.7) <0.001
Neurosurgery 51 (29.3) 11(21.6) 40 (78.4) 0.006
Pupils

Unequal 46 (264) 7 (10.7) 39 (35.7) 0.0005

Unreactive 72 (413) 14 (21.5) 58 (53.2) 0.0001

SBP and SaO, refer to levels on admission. All data represented as either the mean + standard deviation, or frequency (percent), where appropriate. Bold indicates
p <0.05 by Student’s independent t test or chi, between unfavorable and favorable outcome, where appropriate
Abbreviations: GOSE extended Glasgow Outcome Scale, ED Emergency Department, GCS Glasgow Coma Scale, ISS Injury Severity Score, AlS Abbreviated Injury

Scores, SBP systolic blood pressure, SaO, oxygen saturation
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including the levels measured in 50 healthy volun-
teers. The levels of Epi and NE were highest at base-
line measurement immediately following admission. The
mean levels dropped at a rate of approximately 50% at re-
peat measurements.

Association of catecholamine levels and severity of the
brain injury

Figure 3a and b shows the relation of baseline catechol-
amine levels and the Marshall CT score of brain injury
severity [10]. Epi levels rose sharply with increasing
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Marshall score up to a score of 3, and then slowly plat-
eaued beyond a Marshall score of 3 (Fig. 3a). We noted
a similar rise in NE levels with higher Marshall scores.
However, NE levels dropped sharply beyond a Marshall
score of 4 (Fig. 3b).

Effect of baseline cathecolamine levels on outcome

At 6 months, 109 patients (62.6%) had an unfavorable
outcome, including 51 deaths (29.3%). Sixty-five patients
(37.4%) had a favorable outcome and two patients (1.1%)
were lost in the follow-up. Compared with patients who
experienced favorable outcomes, those with unfavorable
outcomes had significantly higher median baseline levels
of both Epi (1216 vs. 4280 pmol/L, p <0.0001) and NE
(5298 vs. 28,492 pmol/L, p <0.0001) at admission. The
results of a fixed-effect logistic regression analysis are
shown in Table 2. In the unadjusted analysis, higher
baseline levels of Epi and NE were strongly associated
with a higher risk of mortality. In the adjusted analysis,
the effect of Epi remained statistically significant [OR,
2.86, 95% confidence interval (CI): 1.62-5.01, p = 0.001],
but the effect of NE was not statistically significant
(1.45, 95% CI: 0.98-2.17, p =0.07). Higher Epi and NE
levels were statistically associated with higher risk of un-
favorable outcome in the unadjusted analyses (Table 2),
and after adjustment for age, GCS, and pupillary reactiv-
ity (Epi: OR, 2.04, 95% CI: 1.31-3.18, p = 0.002; NE: 1.59,
95% CI: 1.07-2.35, p = 0.022).

Effect of temporal changes in catecholamine levels on
outcome

Figure 3¢ and d shows fractional polynomial plots of the
relationship between catecholamine levels and outcomes
at the different time points. The graph demonstrates a
linear relationship between catecholamine levels and
outcome, and a complex interaction with time. Admis-
sion Epi and NE levels had the strongest prognostic ef-
fect. The effects of Epi and NE on outcome weakened
with time. Likelihood ratio tests of one-way interaction
with time was significant only for mortality outcome
(mortality: Epi, p = 0.004; NE, p <0.001; unfavorable out-
come: Epi, p=0.73; NE, p =0.50). Table 3 shows results
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from the random-effects logistic regression analysis to
examine the effect on outcome of the changes with time
in catecholamine levels. The estimated conditional
between-subject effects of Epi on mortality and unfavor-
able outcomes were statistically significant in the un-
adjusted and adjusted analysis (p <0.001). The within-
subject effects, which reflects the effects of changes in
Epi level with time, was statistically significant for mor-
tality but not for unfavorable outcome in the unadjusted
analysis (p =0.02). In the adjusted analysis, the within-
subject effects were not significant for mortality (p =
0.24) or unfavorable outcome (p =0.87). The estimated
conditional between-subject effects of NE on mortality
as well as unfavorable outcome were significant in un-
adjusted and adjusted analysis (p <0.001). The within-
subject effect of NE was significant for mortality in both
unadjusted and adjusted analysis, indicating a drop in
NE levels with time was associated with a lower risk of
mortality. The within-subject effect was not significant
for unfavorable outcome in the unadjusted and adjusted
analysis (p = 0.86 and 0.69 respectively).

Discussion
In this study, we investigated the timeline of catechol-
amine release during the initial 24 h post-injury in a
large prospective cohort of isolated moderate-to-severe
TBI patients and its association with mortality and long-
term functional outcome. In total, 174 patients with iso-
lated TBI were enrolled (79% severe and 21% moderate),
with an excellent long-term follow-up (99%) at 6 months.
Our main findings were: (1) TBI patients displayed a
pattern of peripheral catecholamine release over the first
24 h of injury characterized by a massive release into the
peripheral circulation early in the course of disease,
followed by a gradual decline over time. (2) Both Epi
and NE levels on admission demonstrated an independ-
ent association with functional outcome, measured by
GOSE at 6 months post-injury in a dose—response
fashion.

Traumatic brain injury leads to an immediate and pro-
found SNS activation with massive release of both cen-
tral and peripheral catecholamines [6], which is essential

Table 2 Results of fixed-effect logistic regression analysis for the effect of hospital-admission catecholamine levels on 6-month out-

come of isolated TBI

Catecholamine Mortality outcome Unfavorable outcome p

OR (95% Cl) value value
Epi unadjusted 2.90 (1.93-4.36) <0.001 193 (141-2.64) <0.001
Epi adjusted® 2.86 (1.62-5.01) <0.001 1.59 (1.07-2.35) 0.022
NE unadjusted 2.15 (1.55-2.98) <0.001 266 (1.79-3.94) <0.001
NE adjusted® 1.5 (0.98-2.17) 0.070 2,04 (1.31-3.18) 0.002

?Adjusted to age, Glasgow Coma Scale and pupillary reactivity

Abbreviations: OR odds ratio, Cl confidence interval, Epi epinephrine, NE norepinephrine
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Table 3 Results of random-effects logistic regression analysis to examine the effect of temporal changes in catecholamine levels on

6-month outcome of isolated TBI

Mortality p value Unfavorable p value
OR (95% Cl) OR (95% CI)
Epinephrine
Unadjusted
Between-subjects 591 (3.58-9.75) <0.001 2.18 (1.59-2.99) <0.001
Within-subjects 0.84 (0.73-0.84) 0.02 0.96 (0.87-1.07) 047
Adjusted®
Between-subjects 599 (293-12.22) <0.001 1.57 (1.06-2.33) <0.001
Within-subjects 0.89 (0.73-1.08) 0.24 0.99 (0.87-1.13) 0.87
Norepinephrine
Unadjusted
Between-subjects 5.14 (3.29-8.03) <0.001 3.55 (243-5.22) <0.001
Within-subjects 0.82 (0.70-0.96) 0.02 0.99 (0.87-1.13) 0.86
Adjusted®
Between-subjects 340 (1.93-5.99) <0.001 2.34 (146-3.73) 0.001
Within-subjects 0.78 (0.63-0.97) 0.02 1.03 (0.88-1.21) 0.69

?Adjusted to age, Glasgow Coma Scale and pupillary reactivity
Abbreviations: TBI traumatic brain injury, OR odds ratio, C/ confidence interval

for survival. Chesnut et al. [7] showed that early
hypotension (i.e., a single measure of systolic blood pres-
sure <90 mm Hg occurring from injury to the resuscita-
tion period) is associated with a doubling mortality, and
hypotension occurring in the intensive care unit (i.e., late
hypotension) is associated with 11-fold higher risk of
death after severe TBI [13]. When early and late
hypotension occurs concurrently, the risk of death or
vegetative state approximates 80% [13]. Therefore, while
SNS activation is an essential adaptive response after
brain injury, when excessive or prolonged, that hypera-
drenergic state may have a negative impact on outcome.
Early small studies have already recognized the associ-
ation between high catecholamine levels and severity of
the brain injury, duration of mechanical ventilation,
myocardial damage, endocrine abnormalities, length of
hospital stay, and functional outcome [6, 14—16]. For ex-
ample, Clifton et al. [15] evaluated the levels of NE and
dopamine in the first week after mild-to-severe TBI in
48 patients (18 severe, 17 moderate, and 13 mild). In pa-
tients with isolated TBI, NE levels were proportional to
the severity of brain injury, measured by GCS on admis-
sion. Alert patients (GCS 14) had normal NE values
while patients in coma had levels up to seven times
above normal [15]. Additionally, blood pressure, heart
rate, and temperature increase were proportional to ele-
vations in serum levels of NE. Our results support and
expand the concept that circulating catecholamine levels
are proportional to the severity of the brain injury [14, 15].
In our cohort, the catecholamine levels were associated
with the degree of brain swelling and midline shift

according to the Marshall score [10]. The group including
patients with brain swelling and compressed or absent
cisterns (Marshall III) and patients with brain swelling
and midline shift>5 mm (Marshall IV) displayed the
highest levels of NE at all sampled time points. The
Marshall score [10] was developed based on observations
made during the pilot phase of the National Traumatic
Coma Databank study, which showed that intracranial
hypertension became increasingly more frequent accord-
ing to the mesencephalic cisterns status and the degree
of midline shift [17]. The mortality rates were directly
related to the status of the basal cisterns on the initial
CT scan [10]. Likewise, in our cohort the degree of basal
cisterns compression and/or the degree of midline shift
were related to the highest catecholamine levels on ad-
mission and the highest rates of mortality.

Hamill et al. [14] were the first to describe the role of
catecholamines as prognostic biomarkers of head injury.
In their cohort of only 33 patients (22 severe and 11
moderate TBI), catecholamine levels were also associated
to the severity of brain injury. Patients with GCS 3 or 4
on admission, NE and Epi levels were four- to fivefold
above normal levels, while patients admitted with GCS
>11 had only slightly elevated or normal catecholamine
levels. Interestingly, patients with severe and unchanging
neurological status in the first week after injury had
markedly elevated NE levels on admission, whereas ini-
tial NE levels were only mildly elevated in patients who
improved to a GCS >11. The authors concluded that the
“levels of circulating catecholamines are excellent en-
dogenous and readily quantifiable markers that appear
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to reflect the extent of brain injury and that may predict
the likelihood of recovery.” In another study, Woolf
et al. [16] analyzed the catecholamine response to multi-
system trauma. They found NE levels were significantly
correlated with severity of injury only if the injury in-
cluded the brain. The same group had described that pa-
tients with high levels of NE (>900 pg/mL) remained in
poor clinical status (with a low GCS) or died, while pa-
tients with NE levels <900 pg/mL improved to a GCS of
11 within 1 week [6].

Regarding the pattern of catecholamine release into
the peripheral circulation, contrary to what Hamill et al.
[14] described in their cohort “that catecholamine levels
remained relatively stable within the first 48 hours of in-
jury”, our measurements demonstrate that circulating
catecholamines display a characteristic pattern of release
over the first 24 h of injury. This pattern is characterized
by a massive release of NE and Epi into the peripheral
circulation, with peak levels detected on admission,
followed by gradual decline over the subsequent 24 h.
However, these levels remained significantly higher by
the end of the 24 h period, when compared to measure-
ments done in healthy volunteers. In addition, when TBI
patients were divided into favorable and unfavorable
outcome groups, both groups displayed a similar pattern
over the first 24 h, and both Epi and NE levels remained
significantly higher in the unfavorable outcome group
(Fig. 3a and b).

Our present study further demonstrates that admis-
sion Epi and NE levels are independently associated with
6-month outcome measured by GOSE. Our analysis
seems to suggest that both Epi and NE levels are associ-
ated with unfavorable outcome, while the levels of Epi
are only related to mortality outcome. A dose—response
relationship was seen, with higher catecholamine levels
on admission being related to outcome. Though the cat-
echolamine levels decreased with time, we found this
temporal change had no relation to outcome; rather it
was the absolute level of catecholamines at baseline (ad-
mission) that was associated with outcome.

Several possible pathophysiological mechanisms may
explain the relationship between high catecholamine
levels and worse outcomes after TBI:

1. Animal models of cardiac arrest have demonstrated
that Epi injection during cardiopulmonary
resuscitation (CPR) has detrimental effects through
its alpha-1-adrenergic receptor actions on cerebral
microvascular blood flow [18, 19]. It reduces cortical
microcirculatory blood flow, which increases the se-
verity of cerebral ischemia during CPR [19], and
after restoration of spontaneous circulation [18].

2. The systemic inflammatory response is mediated by
the increased catecholamine levels [20]. Additionally,
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the sympathoadrenal activation drives coagulopathy
and endotheliopathy [21], through endothelial damage/
dysfunction, mostly glycocalyx disruption. This complex
interaction between the SNS, endotheliopathy,
inflammation and coagulation remains to be completely
understood in the acute phase of TBI [20, 21].

3. Increased cardiac and cerebral oxygen demands [22-25].

4. Hypermetabolism, protein catabolism and muscle
wasting [26—29]. Hypermetabolism is a common
metabolic response of trauma, and follows in
concert the increased sympathetic system activity. It
is associated with altered lipid and protein
metabolism, leading to loss of lean body mass [30].

5. Increased intracapillary hydrostatic pressure leading
to vasogenic cerebral edema [31, 32].

Our findings underscore the need for further studies to
determine whether a causal relationship exists between
catecholamine levels and clinical outcome after TBI, as
such a relationship may represent an opportunity for tar-
geted pharmacological therapy against secondary injury
after TBIL. Presently, no specific pharmacological treat-
ment exists that effectively prevents or limits the progres-
sion of secondary brain injury [33]. Given the present
findings, adrenergic blockade, may therefore, be a poten-
tial therapeutic intervention worthy of further exploration.
A recent meta-analysis has demonstrated that exposure to
beta-blockers after TBI was associated with a profound re-
duction of in-hospital mortality by 65% (pooled adjusted
odds ratio 0.35; 95% CI 0.27-0.45) [34]. Despite these re-
sults, the benefits of the use of beta-blockers in the acute
phase of TBI remain unproven and in need of a more ro-
bust evaluation in a randomized clinical trial.

Conclusions

This multicenter, prospective, observational cohort study
has demonstrated that circulating catecholamine levels
are markedly elevated in moderate and severe isolated
blunt TBI patients. This elevation follows a pattern,
characterized by massive release into peripheral circula-
tion early after injury, decreasing thereafter over the first
24 hours. Peak levels of catecholamines are markers of
brain injury severity and are independently associated
with functional outcome measured by the 6-month
GOSE, in a dose-dependent fashion. Also, elevated Epi
levels on admission were independently associated with
an increased risk of death.
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