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Abstract

Introduction Protein disulfide isomerase (PDI) is an important
factor for the protein modification step in the post-translational
event. PDI plays an essential role in cell survival under various
stress conditions. It has been reported that PDI can serve as a
negative regulator of nuclear factor-kappa-B (NF-κB) and that it
can inhibit lipopolysaccharide (LPS)-induced proinflammatory
cytokine production in macrophages. Thus, PDI may be an
intracellular anti-inflammatory molecule. Although we have
previously shown that Kupffer cell-derived proinflammatory
cytokines cause liver injury in sepsis, the effect of sepsis on PDI
expression as well as the effect of PDI inhibition on cytokine
production have not been investigated. We therefore
hypothesized that sepsis downregulates PDI expression and
that the inhibition of PDI promotes proinflammatory cytokine
production.

Method Adult male rats were subjected to sepsis by cecal
ligation and puncture (CLP) or endotoxemia (continuous
infusion of 1 μg/kg body weight LPS by an osmotic pump) for
20 hours. Hepatic tissues were collected and PDI gene
expression was determined. In additional experiments, cells from
a macrophage-like cell line, RAW 264.7, were treated with 100
ng/mL LPS for 4 hours and protein expressions were measured.
RAW 264.7 cells were also treated with bacitracin, a specific
PDI inhibitor, for 24 hours, and tumor necrosis factor-alpha

(TNF-α) gene and protein expression as well as its release in the
cell supernatant were determined. To further confirm the
beneficial effect of PDI in sepsis, RAW 264.7 cells were
transfected with PDI short interfering RNA (siRNA) and PDI
gene expression and TNF-α release were measured by
quantitative polymerase chain reaction and enzyme-linked
immunosorbent assay, respectively.

Results PDI gene expression was significantly decreased by
28% and 69% at 20 hours after CLP or LPS infusion,
respectively. LPS also decreased PDI protein expression by
33% in RAW 264.7 cells. Incubation of RAW 264.7 cells with
bacitracin significantly increased TNF-α gene expression and
TNF-α release as well as its cellular levels in a dose-dependent
manner. Transfection of RAW 264.7 cells with PDI siRNA
produced an average 36.8% inhibition of the PDI gene
expression. This downregulation was correlated with a 3.19-fold
increase in TNF-α release into the cell supernatant.

Conclusion Taken together, these results suggest that
downregulation of PDI by sepsis significantly increases
proinflammatory cytokine production. Thus, prevention of PDI
downregulation in sepsis may be a novel approach to attenuate
hyperinflammation and to reduce tissue injury under such
conditions.

Introduction
Infection and sepsis continue to be the most common causes
of death in noncardiac intensive care units [1-4]. Evidence

indicates that, in the US alone, more than 750,000 patients
develop sepsis and septic shock each year with an overall
mortality of 28.6% [5]. Severe sepsis is a common, expensive,
and frequently fatal condition with as many deaths annually as
those from acute myocardial infarction. The sepsis model of
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cecal ligation and puncture (CLP) mimics many features of
clinical sepsis-peritonitis [6-14]. By using the CLP model of
sepsis in the rat, we have shown that organ dysfunction
occurred early after sepsis [14-18] and that the liver residen-
tial macrophages, Kupffer cells, play an important role in pro-
ducing proinflammatory cytokines (for example, tumor
necrosis factor-alpha [TNF-α]) in sepsis [19,20]. It is encour-
aging, however, that the complex pathophysiology of sepsis is
becoming better understood as more studies are being
reported. These studies are shedding light on the fundamental
mechanisms of the pathogenesis of sepsis and are providing
novel therapeutic approaches to modulate various pathologi-
cal processes under such conditions.

Protein disulfide isomerase (PDI) catalyses the formation,
breakage, and rearrangement of disulfide bonds within a mol-
ecule. This catalysis is an important post-translational event in
the biosynthesis of many extracellular proteins that are usually
coupled to the process of protein folding [21]. Disulfide forma-
tion involves the endogenous oxidized and reduced forms of
glutathione and is catalysed by PDI in the endoplasmic reticu-
lum[22]. The highly oxidative environment of the endoplasmic
reticulum directs the catalytic action of the PDI-related pro-
teins mainly toward the formation of disulfide bonds of proteins
[23,24]. Among various tissues, the liver contains the largest
amount of PDI protein, followed by the kidneys and fat tissues,
and it has been shown that fasting and refeeding affect the
PDI protein and its enzyme activities [25]. PDI is one of the
endoplasmic reticulum stress proteins and it plays an essential
role in cell survival under stress conditions [26]. These pro-
teins also have other properties, such as proteolytic activities
and the capacity of binding calcium, ATP, or other small lig-
ands [26].

Previous studies have demonstrated that proinflammatory
cytokines play a critical role in the initiation and progression of
sepsis syndrome and that TNF-α, interleukin (IL)-1β, and IL-6
are important mediators of hemodynamic, metabolic, and
immunologic alterations in the host during sepsis [27-31]. In
this regard, it has been reported that PDI is a negative regula-
tor of nuclear factor-kappa-B (NF-κB) and can inhibit cytokine
production in macrophages after lipopolysaccharide (LPS)
stimulation, suggesting that PDI may serve as an intracellular
anti-inflammatory molecule [32]. Although PDI has been impli-
cated in tumor- or apoptosis-associated conditions [33,34], its
role in sepsis has not been investigated. In the present study,
we determined PDI gene expression in the liver during sepsis
and endotoxemia. Because previous studies have shown that
Kupffer cell-derived proinflammatory cytokines play a major
role in sepsis-induced liver injury [19,20], we also investigated
the expression of PDI in cells of the macrophage-like cell line,
RAW 264.7, after incubation with LPS. In addition, the spe-
cific PDI inhibitor, bacitracin, was used to determine the effect
of PDI inhibition on TNF-α gene expression and production in
the RAW 264.7 cells.

Materials and methods
Experimental model of sepsis
Polymicrobial sepsis was induced in adult male rats by CLP as
we have previously described [35-37]. Briefly, male Sprague-
Dawley rats (275 to 325 g; Charles River Laboratories, Wilm-
ington, MA, USA) were housed in a temperature-controlled
room on a 12-hour light/dark cycle and fed on a standard
Purina rat chow diet (Nestlé Purina PetCare Company, St.
Louis, MO, USA). Prior to the experiment, rats were fasted
overnight but were allowed water ad libitum. The animals were
anesthetized by isoflurane inhalation and a 2-cm ventral mid-
line abdominal incision was made. The cecum was then
exposed, ligated just distal to the ileocecal valve to avoid intes-
tinal obstruction, punctured twice with an 18-gauge needle,
and returned to the abdominal cavity. The incision was closed
in layers and the animals were resuscitated by 3 mL/100 g
body weight (BW) normal saline subcutaneously immediately
after CLP to provide fluid resuscitation. Sham-operated ani-
mals underwent the same surgical procedure with the excep-
tion that the cecum was neither ligated nor punctured. Hepatic
tissues were then harvested at 5 hours (early sepsis) and 20
hours (late sepsis) after CLP or sham operation for further
analysis. This project was approved by the Animal Care and
Use Committee of the Feinstein Institute for Medical Research
(Manhasset, NY, USA).

Administration of lipopolysaccharides
Male rats were fasted overnight but were allowed water ad
libitum. The animals were anesthetized with isoflurane inhala-
tion and a 1-cm ventral midline abdominal incision was made.
A 200-μL mini-osmotic pump (Model 2ML1; Durect Corpora-
tion, Cupertino, CA, USA) was prefilled with LPS (Escherichia
coli O55:B5; Sigma-Aldrich, St. Louis, MO, USA) solution (2
μg/mL in saline) and connected to a silastic catheter. The pre-
filled pump was primed in sterile normal saline for 2 hours at
37°C. The primed osmotic pump was then implanted subcuta-
neously in the rat and the silastic catheter was inserted into the
abdominal cavity for the continuous infusion of LPS at a rate of
8 μL/hour for 20 hours (total dose: 1 μg/kg BW). Following
the closure of the incision, the animals received 3 mL/100 g
BW normal saline subcutaneously. Control animals underwent
the same surgical procedure except that normal saline was
infused. Hepatic tissues were collected at 20 hours after the
infusion for further analysis.

Cell culture and tumor necrosis factor-alpha 
measurement
Cells of the murine macrophage-like cell line, RAW 264.7,
were obtained from the American Type Culture Collection
(Manassas, VA, USA) and cultured in Dulbecco's modified
Eagle's medium containing 10% heat-inactivated fetal bovine
serum, supplemented with 15 mM HEPES (pH 7.4), 2 mM L-
glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin,
and placed in an incubator at 37°C in 5% CO2/95% air. Cells
were incubated for 4 hours with LPS (100 ng/mL) and PDI
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gene expression was determined by reverse transcription-
polymerase chain reaction (RT-PCR), as described below. In
addition, RAW 264.7 cells were incubated for 24 hours with
bacitracin, a specific PDI inhibitor (Sigma-Aldrich, 0.25, 1.25,
and 3.75 mM) and the supernatant and cell lysate were col-
lected for the measurement of TNF-α. The levels of TNF-α
were determined by using commercially obtained enzyme-
linked immunosorbent assay (ELISA) kits specific for rat TNF-
α (BioSource International, Camarillo, CA, USA). The assay
was carried out according to the instructions provided by the
manufacturer.

Assessment of protein disulfide isomerase and tumor 
necrosis factor-alpha gene expression
Hepatic tissues harvested from animal experiments or cells
from the in vitro studies were fixed in RNAlate solution
(Ambion, Inc., Austin, TX, USA). Total RNA was extracted
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and 4 μg
RNA from hepatic tissues was reverse-transcribed to cDNA.
The resulting cDNAs were amplified by PCR using specific
primers for rat PDI (forward CTA CGA TGG CAA ATT GAG
CA and reverse CTT CCA CCT CAT TGG CTG TT) and rat
glyceraldehyde 3-phosphate dehydrogenase (G3PDH) (for-
ward TTG TAA CCA ACT GGG ACG ATA TGG and reverse
GAT CTT GAT CTT CAT GGT GCT AGG). For TNF-α gene
expression, 1.8 μg RNA from RAW 264.7 cells was reverse-
transcribed to cDNA and amplified by PCR using specific
primers for mouse TNF-α (forward TTC TGT CCC TTT CAC
TCA CTG G and reverse TTG GTG GTT TGC TAC GAC
GTG G) and mouse β-actin (forward GTG GGC CGC TCT
AGG CAC CAA and reverse CTC TTT GAT GTC ACG CAC
GAT TTC). For both PDI and the TNF-α gene expression, the
PCR was conducted at 30 cycles, each cycle consisting of 30
seconds at 94°C, 30 seconds at 60°C, and 1 minute at 72°C.
Following the RT-PCR procedure, the reaction products were
electrophoresed on 1.6% TBE (Tris borate-ethylenediamine-
tetraacetic acid)-agarose gel containing 0.22 μg/mL ethidium
bromide. The gel was then photographed and the band den-
sity was analyzed by a digital image system.

Transfection of RAW 264.7 cells with protein disulfide 
isomerase short interfering RNA
Silencer select predesigned PDI specific short interfering
RNA (siRNA) (catalog number 4390771) previously annealed
was obtained from Ambion, Inc., Austin, TX, USA. RAW 264.7
cells were plated at 5 × 105 cells in 12-well dishes and incu-
bated overnight at 37°C and 5% CO2. Cells were then trans-
fected with 100 nM PDI siRNA or negative control siRNA
using Dharmafect Reagent 4 (Dharmacon RNAi Technologies,
Chicago, IL, USA) in 1 mL media containing 10% serum
according to the manufacturer's instructions. The transfected
cells were incubated at 37°C for 48 hours. Afterward, cells
were harvested for RNA isolation and the supernatant was col-
lected for cytokine measurement. Total RNA isolated was
reverse-transcribed to cDNA and used in real-time PCR with

relative quantification analysis using primers specific for
mouse PDI: forward 5'-TACCTGCTGGTGGAGTTCTATGC-
3' and reverse 5'-TCGGGAGCCAGAGCTTTG-3'. The
mouse β-actin primers were used as a control to quantitate the
fold change in PDI gene expression. The supernatant col-
lected from the transfected cells was used to measure TNF-α
levels using ELISA kits specific for mouse TNF-α. The GPDH
siRNA (100 nM) was used as a positive control for the trans-
fection studies.

Statistical analysis
All data were expressed as mean ± standard error and com-
pared by one-way analysis of variance and Tukey's test or Stu-
dent t test. Differences in value were considered significant if
the P value was less than 0.05.

Results
Protein disulfide isomerase gene expression in the liver 
after cecal ligation and puncture and in RAW 264.7 after 
lipopolysaccharide incubation
As shown in Figure 1, despite the fact that the PDI gene
expression in hepatic tissues decreased by 19% at 5 hours
after CLP, such a decrease was not statistically significant. In
contrast, hepatic PDI gene expression decreased by 28% at
20 hours after CLP (P < 0.05, Figure 1). At 20 hours after the
continuous infusion of LPS (1 μg/kg BW) in normal rats, the
hepatic PDI gene expression markedly decreased by 69% (P
< 0.05, Figure 2). This suggests that LPS may be responsible
for the downregulation of the PDI gene expression observed
20 hours after the onset of sepsis. In cells of the cultured mac-
rophage-like cell line, RAW 264.7, the PDI protein expression

Figure 1

Alterations in the protein disulfide isomerase (PDI) gene expression in hepatic tissues at 5 and 20 hours after cecal ligation and puncture (CLP)Alterations in the protein disulfide isomerase (PDI) gene expression in 
hepatic tissues at 5 and 20 hours after cecal ligation and puncture 
(CLP). The ratio of PDI and the housekeeping gene glyceraldehyde 3-
phosphate dehydrogenase (G3PDH) is calculated. Values (n = 4 to 5/
group) are presented as mean ± standard error and are compared by 
one-way analysis of variance and Tukey's test: *P < 0.05 versus 
respective sham-operated animals.
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was also significantly reduced (by 33%) after incubation with
LPS (100 ng/mL) for 4 hours (Figure 3).

Effects of protein disulfide isomerase inhibition on 
tumor necrosis factor-alpha gene expression and 
production in RAW 264.7 cells
To investigate the role of PDI in the regulation of proinflamma-
tory cytokine TNF-α, we incubated RAW 264.7 cells with a
specific PDI inhibitor, bacitracin (24-hour culture). Figure 4

shows the effect of bacitracin on the TNF-α gene expression
in RAW 264.7 cells. Bacitracin significantly increased TNF-α
gene expression in a dose-dependent manner. The TNF-α
gene expression was increased by 33%, 84%, and 93% at
0.25, 1.25, and 3.75 mM bacitracin, respectively (Figure 4).
Alterations in the supernatant and cellular TNF-α levels in cells
cultured with bacitracin are shown in Figures 5 and 6. As
shown in Figure 5, the supernatant levels of TNF-α signifi-
cantly increased (by 55%) at 0.25 mM bacitracin and further
increased by 317% and 327% at the higher concentrations,
1.25 and 3.75 mM, respectively (Figure 5). Similarly, cellular
concentrations of TNF-α were markedly elevated by bacitracin
in the range of 12- to 54-fold in a dose-response fashion (Fig-
ure 6).

Effect of protein disulfide isomerase inhibition by short 
interfering RNA on tumor necrosis factor-alpha gene 
expression and release in RAW 264.7 cells
To further confirm the role of PDI in the regulation of proinflam-
matory cytokine TNF-α, RAW 264.7 cells were transfected
with PDI siRNA for 48 hours and TNF-α release into the cell
supernatant was assessed. Transfection with 100 nM PDI
siRNA produced an average 36.8% inhibition of the PDI gene
expression (Figure 7a, P < 0.001). Interestingly, the PDI
downregulation by siRNA caused a 3.19-fold increase in TNF-
α release (Figure 7b, P < 0.001).

Figure 2

Alterations in the protein disulfide isomerase (PDI) gene expression in hepatic tissues after continuous infusion of lipopolysaccharide (LPS) or normal saline (control)Alterations in the protein disulfide isomerase (PDI) gene expression in 
hepatic tissues after continuous infusion of lipopolysaccharide (LPS) or 
normal saline (control). The ratio of PDI and the housekeeping gene 
glyceraldehyde 3-phosphate dehydrogenase (G3PDH) is calculated. 
Values (n = 4 to 6/group) are presented as mean ± standard error and 
are compared by Student t test: *P < 0.05 versus control.

Figure 3

Alterations in the protein disulfide isomerase (PDI) protein expression in RAW 264.7 cells after stimulation of lipopolysaccharide (LPS) (100 ng/mL) for 4 hoursAlterations in the protein disulfide isomerase (PDI) protein expression 
in RAW 264.7 cells after stimulation of lipopolysaccharide (LPS) (100 
ng/mL) for 4 hours. The ratio of PDI and the housekeeping gene β-actin 
is calculated. Values (n = 4/group) are presented as mean ± standard 
error and are compared by Student t test: *P < 0.05 versus control.

Figure 4

Alterations in tumor necrosis factor-alpha (TNF-α) gene expression in RAW 264.7 cells after culture with bacitracin (0.25, 1.25, and 3.75 mM) for 24 hoursAlterations in tumor necrosis factor-alpha (TNF-α) gene expression in 
RAW 264.7 cells after culture with bacitracin (0.25, 1.25, and 3.75 
mM) for 24 hours. The ratio of TNF-α and the housekeeping gene β-
actin is calculated. Values (n = 4 to 5/group) are presented as mean ± 
standard error and are compared by one-way analysis of variance and 
Tukey's test: *P < 0.05 versus control; #P < 0.05 versus 0.25 mM 
bacitracin.
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Discussion
The notion that reduced/denatured proteins would spontane-
ously reoxidize and refold to form their native conformation led
to the search for a physiological catalyst of this process. An
enzyme was found that catalyzed the formation of native pro-
teins from the reduced/denatured state and has been termed

as PDI [38]. PDI is widely distributed and has been detected
in most vertebrate tissues, although detailed studies have
been confined to the enzyme from the liver. In the mammalian
liver homogenates, PDI is found in crude microsomal
membrane fractions [39]. In the rat liver, the enzyme co-sedi-
ments with markers of the endoplasmic reticulum [38]. PDI is
a membrane-associated enzyme of the endoplasmic reticulum
and its function, in part, is translational modification of proteins
[40]. PDI may also catalyze the covalent crosslinking of native
proteins or the covalent immobilization of biologically active
molecules to the extracellular matrix.

In the present study, by using animal models of sepsis or endo-
toxemia, we have shown that the PDI gene expression is
decreased at 20 hours after CLP or LPS infusion. Similarly,
PDI gene expression is downregulated in a macrophage-like
cell line after stimulation by LPS for 4 hours. These results indi-
cate that PDI gene expression is downregulated under inflam-
matory conditions and that LPS plays an important role in the
downregulation of PDI. In addition, to evaluate the role of PDI

Figure 5

Alterations in supernatant tumor necrosis factor-alpha (TNF-α) levels in RAW 264.7 cells after culture with bacitracin (0.25, 1.25, and 3.75 mM) for 24 hoursAlterations in supernatant tumor necrosis factor-alpha (TNF-α) levels in 
RAW 264.7 cells after culture with bacitracin (0.25, 1.25, and 3.75 
mM) for 24 hours. TNF-α levels were determined by enzyme-linked 
immunosorbent assay. Values (n = 7 to 8/group) are presented as 
mean ± standard error and are compared by one-way analysis of vari-
ance and Tukey's test: *P < 0.05 versus control; #P < 0.05 versus 0.25 
mM bacitracin.

Figure 6

Alterations in cellular tumor necrosis factor-alpha (TNF-α) levels in RAW 264.7 cells cultured with bacitracin (0.25, 1.25, and 3.75 mM) for 24 hoursAlterations in cellular tumor necrosis factor-alpha (TNF-α) levels in 
RAW 264.7 cells cultured with bacitracin (0.25, 1.25, and 3.75 mM) 
for 24 hours. TNF-α levels were determined by enzyme-linked immuno-
sorbent assay. Values (n = 7 to 8/group) are presented as mean ± 
standard error and are compared by one-way analysis of variance and 
Tukey's test: *P < 0.05 versus control; #P < 0.05 versus 0.25 mM 
bacitracin.

Figure 7

Alterations in the protein disulfide isomerase (PDI) gene expression and supernatant tumor necrosis factor-alpha (TNF-α) levels in RAW 264.7 cells transfected with PDI short interfering RNA (siRNA) for 48 hoursAlterations in the protein disulfide isomerase (PDI) gene expression 
and supernatant tumor necrosis factor-alpha (TNF-α) levels in RAW 
264.7 cells transfected with PDI short interfering RNA (siRNA) for 48 
hours. (a) PDI gene expression was determined by real-time polymer-
ase chain reaction using specific PDI primers. (b) The TNF-α release 
into the cell supernatant was measured by enzyme-linked immunosorb-
ent assay. Values (n = 3 to 6/group) are presented as mean ± standard 
error and are compared by paired Student t test. *P < 0.05 versus 
control.
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on TNF-α gene expression, we have used bacitracin, a
specific inhibitor of PDI, on the TNF-α release and the expres-
sion in 24-hour-cultured RAW 264.7 cells. TNF-α levels in the
supernatant and cellular TNF-α in RAW 264.7 cells cultured
with bacitracin were significantly increased. In addition, we fur-
ther confirmed that downregulation of PDI using PDI siRNA
significantly increased TNF-α release from cells. These results
suggest that PDI plays an important role in the production of
proinflammatory cytokine TNF-α.

PDI has been found to be secreted from a variety of cell types,
including hepatocytes [41], pancreatic exocrine cells [42],
endothelial cells [43], and activated platelets [44]. While the
biological importance of these secreted proteins remains in
most cases obscure, the function of PDI secreted by
thyrocytes into the lumen of the thyroid follicles has been iden-
tified [45]. It has been shown that the enzyme is involved in the
control of thyroglobulin folding and multimerization, probably
by reducing the intermolecular disulfide bridges and thus lim-
iting the extent of multimer formation. While the full biological
importance of the protein disulfide activity must still be under-
stood, some interesting examples of PDI in pathological
events such as Sindbis virus [46] and HIV [47] have been
demonstrated. It has been suggested that PDI is specifically
upregulated in response to hypoxia/ischemia in astrocytes
[48]. In addition, the overexpression of this gene into neurons
protects against apoptopic cell death induced by hypoxia/
brain ischemia. Further studies by the same group indicate
that ubiquilin, an endoplasmic reticulum-associated protein,
together with PDI, has critical functions as a regulatory protein
for cell death and therefore that upregulation of these proteins
may result in the acquisition of tolerance against ischemic
stress in glial cells [48]. A recent report also indicates that the
transcriptional activity of NF-κB is negatively regulated by PDI
[32]. Overexpression of PDI in RAW 264.7 cells strongly sup-
pressed the LPS-induced production of inflammatory
cytokines as well as NF-κB-dependent luciferase activity. This
negative regulation of NF-κB was reversed by bacitracin, a
PDI inhibitor. Finally, PDI expression was induced by the anti-
inflammatory cytokine IL-10, and IL-10-mediated inhibition of
LPS-induced IL-6 expression was reduced by bacitracin.
These findings clearly demonstrate that PDI is a negative reg-
ulator of NF-κB and may act downstream of IL-10 in this signal
pathway [32].

Our present study with septic rats, in which immunomodula-
tion is known, also indicates that PDI is a regulator of inflam-
matory cytokines. Previous studies have demonstrated that
proinflammatory cytokines play a critical role in the initiation
and progression of sepsis syndrome and that TNF-α, IL-1β,
and IL-6 are important mediators of hemodynamic, metabolic,
and immunologic alterations in the host during sepsis [27-31].
Studies have also shown that circulating concentrations of
TNF-α, IL-1β, and IL-6 increase significantly in the early,
hyperdynamic stage of sepsis and remain elevated in the late,

hypodynamic stage of sepsis [27,49]. In the present study, we
have provided a clue that TNF-α release increased signifi-
cantly in RAW 264.7 cells treated with bacitracin, which is an
inhibitor of PDI. This result indicates the important role of PDI
in TNF-α release in sepsis.

Conclusion
In summary, our results indicate that PDI gene expression is
downregulated in sepsis or endotoxemia. In addition, PDI
gene expression is attenuated in a macrophage-like cell line
after stimulation with LPS. Since the PDI inhibitor bacitracin
significantly increases TNF-α release in a macrophage cell
line, it appears that prevention of PDI downregulation may be
a novel approach to reduce proinflammatory cytokine release
in sepsis. Further studies are necessary in this direction.
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Key messages

• Protein disulfide isomerase (PDI), an important factor 
for the protein modification step in the post-translational 
event, plays an essential role in cell survival under stress 
conditions.

• In an experimental model, PDI gene and protein expres-
sions were significantly downregulated in late sepsis.

• Similar downregulation was also observed in lipopoly-
saccharide-treated RAW 264.7 cells, a macrophage-
like cell line.

• Bacitracin, a specific PDI inhibitor, significantly 
increased tumor necrosis factor-alpha (TNF-α) gene 
expression and TNF-α release as well as its cellular lev-
els in a dose-dependent manner.

• Collectively, the data suggest that prevention of down-
regulation of PDI in sepsis attenuates hyperinflamma-
tion and reduces tissue injury.
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