
233

ARDS = acute respiratory distress syndrome; BAL = bronchoalveolar lavage; HFOV = high-frequency oscillatory ventilation; IL = interleukin; NF =
nuclear factor; PEEP = positive end expiratory pressure; TNF-α = tumor necrosis factor alpha; VALI = ventilator-associated lung injury; VILI =
ventilator-induced lung injury.
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Since the first description of acute respiratory distress syn-
drome (ARDS) in 1967 [1] and the first description of the
treatment of ARDS with mechanical ventilation in 1971 [2],
the only therapeutic invention to convincingly demonstrate a
significant reduction in mortality in patients with ARDS and
acute lung injury is a lung-protective strategy of mechanical
ventilation. No pharmacologic intervention has significantly
reduced mortality in a large-scale trial [3]. In the recent
National Institutes of Health-sponsored Acute Respiratory
Distress Syndrome Network study of 861 patients [4], venti-
lation with 6 ml/kg (predicted body weight) and a plateau
airway pressure limit of 30 cmH2O reduced mortality from 40
to 31% compared with a conventional tidal volume of
12 ml/kg and similar levels of positive end expiratory pressure
(PEEP). These data confirm a long-held suspicion of many

clinicians that mechanical ventilation has a double role in
ARDS: life saving, but also potentially magnifying the severity
of lung injury.

Despite the demonstrated benefits of tidal volume reduction, the
mechanisms of the protective effect are incompletely under-
stood. Lung injury related to mechanical ventilation ranges from
macroscopic air leaks to intracellular changes in protein phos-
phorylation signaling cascades and gene expression [5]. The
focus of the present article is to review these more subtle
changes and their roles in the release of proinflammatory media-
tors, in changes in permeability, and in changes in ion and solute
transport in ventilator-induced lung injury (VILI). Because the
precise contribution of mechanical ventilation to lung injury can
be difficult to discern in patients with pre-existing acute lung
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Abstract

Acute respiratory distress syndrome (ARDS) and acute lung injury are among the most frequent
reasons for intensive care unit admission, accounting for approximately one-third of admissions.
Mortality from ARDS has been estimated as high as 70% in some studies. Until recently, however, no
targeted therapy had been found to improve patient outcome, including mortality. With the completion
of the National Institutes of Health-sponsored Acute Respiratory Distress Syndrome Network low tidal
volume study, clinicians now have convincing evidence that ventilation with tidal volumes lower than
those conventionally used in this patient population reduces the relative risk of mortality by 21%. These
data confirm the long-held suspicion that the role of mechanical ventilation for acute hypoxemic
respiratory failure is more than supportive, in that mechanical ventilation can also actively contribute to
lung injury. The mechanisms of the protective effects of low tidal volume ventilation in conjunction with
positive end expiratory pressure are incompletely understood and are the focus of ongoing studies.
The objective of the present article is to review the potential cellular mechanisms of lung injury
attributable to mechanical ventilation in patients with ARDS and acute lung injury.
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injury, the term ventilator-associated lung injury (VALI) is often
used in place of VILI, especially in clinical studies [5].

Why are patients with ARDS at risk for VALI?
The incidence of ARDS has been estimated at
5–15/100,000 per year [6–9], but recent data suggest the
incidence may be higher [10]. ARDS is a syndrome charac-
terized by the formation of protein-rich pulmonary edema,
hyaline membranes, and the influx of neutrophils into the air-
space [3]. Nearly all patients with ARDS require mechanical
ventilation and are therefore at risk for VALI. This appears to
be due in part to the uneven distribution of lung injury and
edema in ARDS.

Studies using computerized tomography scanning have
demonstrated that the distribution of air and fluid in the lungs
of ARDS patients is not uniform [11]. Heterogeneity in the
lung results in the functional reduction of the lung volume and
predisposes the lung to mechanical forces not encountered
in normal physiology. These potentially pathogenetic forces
include excessive tensile strain (stretch) from overdistention
and interdependence, and shear stress to the epithelial cells
of the airspaces due to the movement of air and fluid during
tidal ventilation. The latter might be especially important when
collapsed lung units are re-expanded.

Under this paradigm, regions of the injured lung exist in one
of three conditions: fluid-filled or collapsed and never inflated;
collapsed or fluid containing at end exhalation, but re-
expanded with air on end inhalation; or aerated throughout
the respiratory cycle, but prone to overdistention due to the
uneven distribution of an inflated breath and interdepen-
dence. Interdependence refers to the forces exerted on an
alveolus by the surrounding alveoli. In a normal lung, the alve-
olar distending force is equal to the transpulmonary pressure.
In the injured lung, local distending forces will differ to
oppose heterogeneity and to restore lung expansion [5]. For
example, many years ago Mead and colleagues [12] pro-
posed that, at a transpulmonary pressure of 30 cmH2O, the
pressure across an atelectatic region surrounded by a fully
expanded lung would be approximately 140 cmH2O. In the
heterogeneously injured lung, strain may therefore be greater
in areas where the inflated lung is adjacent to the atelectatic
or fluid-filled lung due to interdependence. The potentially
injurious effects of strain and shear force on lung epithelial
and endothelial cells are summarized in Figure 1.

Effects of mechanical forces on lung injury
Inflammation
One potential mechanism of lung injury propagation in VALI is
increased local inflammation in response to mechanical
stimuli. Ranieri and colleagues [13] measured bronchoalveo-
lar lavage (BAL) and plasma levels of several proinflammatory
cytokines in 44 patients with ARDS. At the time of diagnosis,
patients with ARDS were randomized to receive mechanical
ventilation with a conventional strategy (mean tidal volume,

11.1 ml/kg; mean plateau airway pressure, 31 cmH2O; mean
PEEP, 6.5 cmH2O) or to receive a low tidal volume, higher
PEEP strategy of ventilation (mean tidal volume, 7.6 ml/kg;
mean plateau airway pressure, 24.6 cmH2O; mean PEEP,
14.8 cmH2O). In the lower tidal volume group, the PEEP was
set above the lower inflection point of the respiratory system
pressure–volume curve (Fig. 2). Plasma and BAL cytokines
were then measured serially for 36 hours. BAL fluid from
patients in the lower tidal volume, higher PEEP group had sig-
nificantly fewer neutrophils and lower concentrations of tumor
necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-8. Plasma
levels of IL-6 were also significantly lower in the patients that
received protective ventilation [13]. Plasma IL-6 levels also
declined in patients ventilated with low tidal volume com-
pared with conventional tidal volume in the National Institutes
of Health Acute Respiratory Distress Syndrome Network
study [4]. In other clinical studies, elevations in proinflamma-
tory cytokines correlate with increased patient mortality in
ARDS [14,15].

In experimental studies, high tidal volume, low PEEP ventila-
tion induces the release of proinflammatory cytokines into the
airspaces and bloodstream, neutrophil infiltration into the
lung, and the activation of lung macrophages [16]. Tremblay
and colleagues [17] found that isolated, nonperfused rat

Figure 1

Potential mechanisms of ventilator-induced lung injury. Mechanical
ventilation induces tensile strain and shear forces in the lung. These
forces result in increased permeability and disruption of the
alveolar–capillary barrier. Mechanical forces also induce an increase in
the concentrations of proinflammatory mediators (including IL-1β,
tumor necrosis factor alpha, IL-8 and IL-6) in the distal airspaces of the
lung. The loss of compartmentalization in the lung results in the release
of these mediators into the systemic circulation where they may play a
role in end organ dysfunction. Mechanical strain also reduces the
active sodium transport-dependent clearance of edema fluid from the
airspaces. This potentially contributes to increased edema formation,
ongoing lung volume loss, and greater ventilator-associated lung injury.
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lungs ventilated with a tidal volume of 40 ml/kg without PEEP
for 2 hours had large increases in lavage concentrations of
TNF-α, IL-1β, IL-6, and macrophage inflammatory peptide 2.
Reduction of the tidal volume to 15 ml/kg or lower reduced
the lavage concentrations of these mediators, even if the end
inspiratory lung volume was similar. The increase in these
cytokines was greater if rats were pretreated with endotoxin,
but the differences among the groups persisted. High tidal
volume ventilation also increased the expression of c-fos
mRNA, a transcription factor important in the early stress
response [17].

Although others using  a similar model have disagreed with
these findings [18], the results are consistent with clinical
and experimental studies of VALI. Chiumello and colleagues
[19] found that injurious ventilatory strategies increased
levels of TNF-α and macrophage inflammatory peptide 2 in
the lung as well as the systemic circulation in a rat model of
acid aspiration-induced lung injury. Ventilation of lungs iso-
lated from rats exposed to cecal ligation-induced sepsis with
a tidal volume of 20 ml/kg, without PEEP, resulted in higher
BAL levels of TNF-α, IL-1β, and IL-6 compared with unventi-
lated controls and lungs ventilated with a tidal volume of
10 ml/kg and a PEEP level of 3 cmH2O [20]. In a rat model of

acid-induced acute lung injury, ventilation with a higher tidal
volume (12 ml/kg) resulted in higher plasma concentrations
of IL-1β compared with those with lower tidal volume ventila-
tion (Fig. 3).

The potential importance of proinflammatory mediators in the
development of VALI is also supported by data from experimen-
tal studies of the effects of anti-TNF-α antibody and IL-1 recep-
tor antagonist on lung injury following surfactant depletion. Imai
and colleagues [21] reported that the pretreatment of surfac-
tant-depleted rabbits with anti-TNF-α antibody prior to the initi-
ation of mechanical ventilation resulted in less severe histologic
lung injury and preserved oxygenation. In a similar model, IL-1
receptor antagonist pretreatment reduced endothelial albumin
permeability and neutrophil infiltration [22].

To identify the cellular source of inflammatory cytokines in
VILI, Pugin and colleagues [23] cultured human alveolar
macrophages on flexible silastic membranes and exposed the
cells to cyclic stretch for up to 32 hours. Cyclic strain
induced an increase in the secretion of IL-8. When the
macrophages were pretreated with lipopolysaccharide,
TNF-α and IL-6 secretion also increased to a greater extent in
strained cells compared with static cultures. The authors also
noted that there was an increase in nuclear NFκB in
macrophages after 30 min of cyclic strain [23].
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Figure 2

Static pressure–volume curve of a rat with aspiration-induced acute
lung injury. The shaded areas indicate lung volumes where ventilator-
associated lung injury is likely to be most severe based on data from
experimental studies. Some clinical studies of protective ventilation in
acute respiratory distress syndrome patients have used the lower
inflection point of the inspiratory limb as a guide to set the positive end
expiratory pressure (PEEP). The events associated with this inflection
at the alveolar level are uncertain, however, and a clear inflection is not
always apparent. The recent National Insitutes of Health-sponsored
Acute Respiratory Distress Syndrome Network study that
demonstrated a reduction in mortality did not use a pressure–volume
curve to set the PEEP [4].
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Figure 3

Plasma IL-1β following 4 hours of mechanical ventilation in a rat model
of acid aspiration. Ventilation with a tidal volume of 12 ml/kg
significantly increased plasma levels of IL-1β compared with rats
ventilated with 3 ml/kg and a similar level of positive end expiratory
pressure (PEEP; cmH2O) (*P < 0.05 by paired t test, mean ± standard
deviation). IL-1β levels in the 3 ml/kg acid-injured group were not
different from those in uninjured rats ventilated with 12 ml/kg or from
uninjured, never ventilated rats (n = 5 in each acid injured group and
n = 3 in the uninjured groups).
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In another study by the same group, a variety of cell types,
including macrophages, A549 cells, two endothelial cell lines,
a bronchial epithelial cell line, and primary lung fibroblasts,
were exposed to the same cyclic strain. Of these cell types,
only macrophages and A549 cells secreted IL-8 in response
to mechanical distention. The relative quantity of IL-8
secreted from macrophages was much greater than the
amount secreted from A549 cells. It should be noted that
A549 cells are a transformed cell line from a patient with
bronchioloavleolar cell carcinoma, and may not respond to
cyclic stretch in the same way as primary bronchial or alveolar
epithelial cells. In the absence of endotoxin stimulation,
cytokines were not secreted in significant amounts from any
of the other cell types [24]. The importance of this finding is
highlighted by clinical data that demonstrate high levels of IL-
8 in pulmonary edema fluid from ventilated patients with
ARDS [25,26]. The alveolar macrophage may therefore be an
important stretch-responsive cell in the initiation of the inflam-
matory response observed in VILI. This does not, however,
rule out a possible role for other cell types in the propagation
of early proinflammatory signaling in VILI.

Held and colleagues [27] recently reported that mechanical
stimuli mediate the release of inflammatory cytokines by
increasing phosphorylation of IκB and translocation of NFκB
to the nucleus. Interestingly, initiation of NFκB activation in
response to mechanical stimuli may be independent of the
TRL-4/lipopolysaccharide receptor and can be inhibited by
corticosteroids. This finding raises the possibility that pharma-
cologic therapies could be targeted at ventilator-induced
NFκB activation without completely inhibiting the innate
immune response [5].

Barrier disruption

Integral to the current hypothesis of the pathogenesis of VILI
is disruption of the alveolar–capillary barrier. Most clinical
strategies of protective ventilation have focused on minimiz-
ing tensile strain and shear stress by minimizing the end inspi-
ratory lung volume and maintaining a relatively high end
expiratory lung volume (Table 1). Data from experimental
studies have served as the basis for these clinical studies. In
a sentinel study, Webb and Tierney [28] reported that high
tidal volume ventilation induced pulmonary edema and diffuse
alveolar damage histologically indistinguishable from ARDS in
a rat model. They also found that high volume (high inspira-
tory pressure) ventilation was much less injurious when PEEP
was used. Rats ventilated with a peak airway pressure of
45 cmH2O and no PEEP developed significantly more edema
than rats ventilated with the same peak inspiratory pressure
and a PEEP of 10 cmH2O. Of course, the tidal volume used
to achieve a comparable peak pressure was considerably
lower when PEEP was added (43 ml/kg compared with
15 ml/kg with PEEP).

Dreyfuss and colleagues [29] subsequently found that high
tidal volume ventilation induced increased permeability
edema and that transpulmonary pressure rather than peak
airway pressure was the most important determinant of
edema formation. Transpulmonary pressure, or the alveolar
distending pressure, is analogous to lung volume. These
investigators ventilated rats with a peak airway pressure of
45 cmH2O using either positive or negative pressure ventila-
tion, and found similar increases in lung edema and protein
permeability. Dreyfuss and colleagues also ventilated rats that
had rubber bands applied to the chest and abdomen such
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Table 1

Clinical studies of protective ventilation

Study Intervention group Control group Outcome

Acute Respiratory Distress VT, 6.2 ± 0.8 ml/kg (PBW); VT, 11.8 ± 0.8 ml/kg (PBW); Mortality reduced from 40% to 
Syndrome Network low PEEP, 9.4 ± 3.6 cmH2O PEEP, 8.6 ± 3.6 cmH2O 31% with low tidal volume, more 
tidal volume (861 patients) [4] ventilator-free days, more organ 

failure-free days

Amato et al. (53 patients) [62] VT, ~6 ml/kg; PEEP, VT, ~12 ml/kg; PEEP, Mortality reduced from 71% to 
14.7 ± 3.9 cmH2O 8.7 ± 0.4 cmH2O 38% with intervention
(PEEP set by PVC)

Stewart et al. (120 patients) [66] VT, 7.0 ± 0.7 ml/kg; VT, 10.7 ± 1.4 ml/kg; No difference
PEEP, 8.6 ± 3.0 cmH2O PEEP, 7.2 ± 3.3 cmH2O

Brochard et al. (116 patients) [65] VT, 7.1 ± 1.3 ml/kg; VT, 10.3 ± 1.7 ml/kg; No difference
PEEP, 10.7 ± 2.9 cmH2O PEEP, 10.7 ± 2.3 cmH2O

Brower et al. (52 patients) [64] VT, 7.3 ± 0.7 ml/kg (PBW); VT, 10.2 ± 0.7 ml/kg (PBW); No difference
PEEP, 8.3 ± 0.5 cmH2O PEEP, 9.5 ± 0.5 cmH2O

VT, tidal volume; PEEP, positive end expiratory pressure; PBW, predicted body weight (0.91[height (cm) – 152.4] + 50 for males or 0.91[height
(cm) – 152.4] + 45.5 for females — note that PBW is generally up to 20% lower than dry body weight [used in other studies]); PVC,
pressure–volume curve of the respiratory system.
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that the peak airway pressure was the same but the tidal
volume was reduced by roughly one-half, and they found that
no edema developed. These findings correlated with scan-
ning electron micrograph studies of lungs exposed to high
distending pressures, which reported endothelial and epithe-
lial plasma membrane breaks [29,30].

Parker and Ivey [31] expanded these findings, showing that
changes in intracellular signaling also contributed to the
increased permeability edema associated with high tidal
volume ventilation. In isolated, perfused lungs, the administra-
tion of a β-adrenergic agonist or a phosphodiesterase
inhibitor to increase intracellular cAMP resulted in signifi-
cantly less lung edema and lower protein permeability during
high tidal volume ventilation. Furthermore, blocking strain-
activated calcium channels with gadolinium also reduced the
severity of ventilator-induced pulmonary edema and protein
permeability [32]. The same group also reported that inhibi-
tion of tyrosine kinase, calcium/calmodulin, or inhibition of
phosphorylation of myosin light chain kinase also reduces
edema and protein permeability in rats ventilated with large
tidal volumes [33,34]. Phosphorylation and activation of
myosin light chain kinase results in the formation of cytoskele-
tal stress fibers and in the formation of intercellular gaps. In
vitro studies of endothelial cells have demonstrated that
shear stress induces a signaling cascade culminating in
myosin light chain kinase activation and the formation of
stress fibers [35].

As with endothelial permeability, alveolar epithelial permeabil-
ity increases with increasing lung volume. For example,
increasing lung volume by the application of PEEP during
mechanical ventilation results in increased clearance of
inhaled 99mTc-DPTA (molecular weight, 393 Da), in excess of
what would be predicted from a change in surface area alone
[36,37]. Alveolar epithelial permeability to albumin also
increases with increasing lung volume [38,39]. In one study,
the epithelium of isolated lung lobes distended with fluid to a
pressure of 40 cmH2O became more permeable to albumin
[39]. This correlated with an increase in the equivalent pore
radius from approximately 1 to 5 nm. When entire lungs
rather than isolated lobes were tested, the effect was less
pronounced because regional differences in transpulmonary
pressure were prevented [38]. Which experimental condition
most closely approximates clinical VALI is uncertain; however,
lung distention near to or exceeding the limits of normal phys-
iology results in increased epithelial permeability even in unin-
jured lungs.

Ventilation of injured lungs with tidal volumes within a physio-
logic range can also exacerbate epithelial permeability
changes. In a rat model of acid-induced acute lung injury,
Frank and colleagues [40] found that ventilation with 6 ml/kg
resulted in less alveolar flooding and less alveolar epithelial
injury as measured by plasma levels of a type I cell-specific
marker of injury (RTI40) compared with 12 ml/kg and a similar

level of PEEP. This finding correlated with histologic and
ultrastructural differences in airspace edema and epithelial
cell injury. When the tidal volume was further reduced to
3 ml/kg, epithelial injury and airspace edema improved even
more. Reducing PEEP during ventilation with a tidal volume of
12 ml/kg, such that the end inspiratory lung volume and mean
airway pressures were similar to the 6 ml/kg group, did not
prevent epithelial injury or edema [40]. Similar findings have
also been reported following surfactant depletion. In this
model, tidal volume reduction prevented airspace edema for-
mation and preserved oxygenation, suggesting preserved
epithelial barrier function. Interestingly, when surfactant-
depleted animals were ventilated with high-frequency oscilla-
tory ventilation (HFOV), edema and histologic injury were
further reduced [41,42].

Studies of alveolar epithelial type II cells grown on silastic
membranes have helped to characterize the mechanical prop-
erties of these cells and have provided insight into the mech-
anisms of cell injury in VILI. In one study, increasing the
duration, amplitude, or frequency of the cyclic strain
increased the plasma membrane injury and cell death [43].
Most cell injury occurred within 5 min. If small amplitude
deformation was superimposed on basal tonic strain, there
was less membrane disruption and cell death compared with
a large amplitude stain to same peak level. In this study, the
rate of cellular deformation during a single strain did not
affect the plasma membrane injury [43]. In another study,
plasma membrane disruption induced by cyclic mechanical
strain in vitro was dependent on the rate of plasma mem-
brane trafficking to the cell surface. Inhibition of cytoskeletal
remodeling had little impact on the cell injury, indicating that
mechanical disruption of the cytoskeleton is less important
than plasma membrane disruption [44,45]. Although these
data do not exclude strain-induced signaling through the
cytoskeleton as an important mechanism of VILI, they support
the hypothesis that membrane disruption and impaired lipid
trafficking may be a major mechanism.

Disruption of the alveolar–capillary barrier is an important
mechanism responsible for the formation of alveolar edema,
which is characteristic of VILI. This loss of compartmentaliza-
tion combined with the ventilator-induced amplification of
inflammation in acute lung injury may also be an important
mechanism of multisystem organ failure, one of the most
common causes of death in ARDS (Fig. 1). Several investiga-
tors have shown that increased permeability of the
alveolar–capillary barrier correlated with the increased levels
of proinflammatory mediators in the systemic circulation. von
Bethmann and colleagues [46] reported that, in an isolated
perfused murine lung model, ventilation with a transpulmonary
pressure of 25 cmH2O compared with 10 cmH2O lead to a
significant increase in the concentrations of both TNF-α and
IL-6 in the perfusate. In patients with ARDS, concentrations
of TNF-α, IL-1β and IL-6 were higher in the arterial blood
(obtained via a wedged pulmonary artery catheter) compared
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with mixed venous blood, suggesting that the lungs were a
major source of systemic proinflammatory cytokines in these
patients [47]. Several recent studies evaluated the influence
of mechanical ventilation strategy on the translocation of bac-
teria from the lung into the bloodstream [48–50]. After intra-
tracheal instillation of bacteria, animals ventilated with a
higher tidal volume and minimal PEEP (0–3 cmH2O) develop
more bacteremia more frequently and more rapidly than
animals ventilated with protective strategies.

The release of proinflammatory cytokines into the systemic
circulation may have important consequences. In the National
Institutes of Health Acute Respiratory Distress Syndrome
Network low tidal volume study, as already discussed, plasma
levels of IL-6 in the 6 ml/kg tidal volume group were signifi-
cantly lower than in the conventional tidal volume group. This
result was associated with a greater number of organ failure-
free days, although this outcome variable may not be inde-
pendent of mortality. In an experimental study of acid
aspiration, Imai and colleagues [51] reported that 8 hours of
mechanical ventilation with an injurious strategy led to epithe-
lial cell apoptosis in the kidney and small intestine, and to
increased plasma creatinine levels. An increase in distal ileal
permeability has also been reported in rats ventilated with a
tidal volume of 20 ml/kg compared with 10 ml/kg [52]. Taken
together, these data suggest a role for VALI in the pathogen-
esis of multisystem organ failure.

Reduced airspace edema clearance

The presence of edema fluid in the airspaces is both an effect
of lung injury and a potential mechanism by which VILI is
amplified. Edema fluid fills alveoli and promotes airspace col-
lapse by inactivating surfactant and filling airways [53–55].
This loss of lung volume leads to heterogeneity of the lung,
resulting in even greater overdistention of the remaining lung
units [56]. Therefore, if the clearance of edema fluid from the
distal airspaces is reduced, a vicious cycle of airspace edema
leading to greater lung overdistention and shear stress will
ensue (Fig. 1). For example, flooding distal lung units of rats
with saline was found to act synergistically with high tidal
volume ventilation to increase endothelial permeability to
albumin [57]. In this study, the authors also found that perme-
ability to albumin increased as the respiratory system compli-
ance decreased, suggesting that a smaller lung volume was
ventilated. As ventilated lung volume decreased, more injury
resulted [57].

The clearance of edema from the airspaces requires the
active transport of sodium across the epithelium. Lecuona
and colleagues [58] reported that high tidal volume ventila-
tion induced a reduction in energy-dependent sodium trans-
port. Using alveolar type II cells isolated from rats ventilated
with a tidal volume of either 30 or 40 ml/kg, these authors
found that sodium–potassium ATPase activity was reduced
compared with rats ventilated with a lower tidal volume
(10 ml/kg). In another study, airspace edema clearance in

lungs isolated from rats ventilated for 40 min with a tidal
volume of 40 ml/kg was reduced by approximately 50%.
Instilling the airspaces of the isolated lungs with a β-adrener-
gic agonist restored the rate of airspace edema clearance by
increasing the activity and quantity of sodium–potassium
ATPase in the basolateral membrane. This effect was blocked
by disrupting the microtuble assembly with colchicine, sug-
gesting that it is the translocation of sodium–potassium
ATPase from intracellular pools to the plasma membrane that
accounts for much of the effect [59]. In an in vivo rat model of
acute lung injury, tidal volume reduction from 12 to 3 ml/kg
resulted in greater preservation of airspace fluid transport
(Fig. 3) [40]. In clinical studies of ARDS patients, preserved
airspace fluid clearance correlates with improved survival
[60,61]. Taken together, these data suggest that pharmaco-
logic therapy targeted at upregulating airspace fluid clear-
ance may have a role in the prevention of VALI, although
further study is necessary.

Prevention of VALI
Prospective clinical studies of patients with ARDS and acute
lung injury have demonstrated that protective ventilation
strategies incorporating relatively high levels of PEEP and low
tidal volumes reduce mortality [4,62,63]. It is clear from the
most convincing of these studies [4] that excessive end inspi-
ratory lung volume is a critical mediator of VALI (Table 1). In
this multicenter study, ventilation with similar levels of PEEP
but with a tidal volume of 6 ml/kg (predicted body weight)
was associated with 31% patient mortality, while ventilation
with the conventional 12 ml/kg was associated with 40%
mortality. The plateau airway pressure in the low tidal volume
group was required to be less than 30 cmH2O (mean,
25 ± 6 cmH2O), compared with a mean plateau airway pres-
sure of 33 ± 8 cmH2O in the conventional tidal volume group.
This highlights the fact that the primary difference between
the groups was in end inspiratory lung volume.

Furthermore, the mortality benefit persisted regardless of the
initial respiratory system compliance. In a smaller study of 53
patients by Amato and colleagues [62], limiting the tidal
volume to less than 6 ml/kg with the PEEP set above the lower
inflection point of the static pressure–volume curve (Fig. 2)
also reduced mortality, although mortality in the conventional
ventilation group in this study was high (71% compared with
38% in the protective ventilation group). Other small studies
testing intermediate tidal volumes have not demonstrated a
mortality benefit (Table 1) [64–66]. These data indicate that
limiting the tidal volume to 6 ml/kg in ARDS and acute lung
injury patients reduces mortality, but smaller incremental
reductions in tidal volume may not. Furthermore, in the Acute
Respiratory Distress Syndrome Network study, the mortality
benefit appears to be primarily attributable to tidal volume
reduction as the PEEP levels were comparable (Table 1).

The other common feature to strategies of protective ventila-
tion is a relatively high level of PEEP. Based on experimental
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data, the PEEP may minimize VILI by preserving the lung
volume, by preserving surfactant function, and by reducing
shear forces created by the opening and collapse of airways
and alveoli. The best method to select a PEEP level for a
given patient with ARDS is not yet known. Although some
studies have used the pressure–volume curve of the respira-
tory system to set the PEEP above the lower inflection point
(Fig. 2), others have used arbitrary scales of PEEP. Both
strategies, when combined with low tidal volume ventilation,
reduce mortality from ARDS [4,62].

In the study of Amato and colleagues [62], a PEEP level
greater than the lower inflection point and a recruitment
maneuver at the start of the study were used. In the Acute
Respiratory Distress Syndrome Network study, the PEEP was
set according to a predetermined scale and not according to
the pressure–volume curve. A predetermined scale was used
because the relationship between the shape of the pressure–
volume curve and events at the alveolar level is affected by
numerous factors and is not obvious in every patient [67–70].
In a subsequent study by the Acute Respiratory Distress Syn-
drome Network that combined the low tidal volume protocol
with a scale incorporating higher PEEP levels compared with
the previously tested scale [4], no additional mortality benefit
was observed [71]. Other methods of setting the PEEP,
including adjusting the PEEP based on the shape of a con-
stant flow compliance curve, are the subject of ongoing
studies [72].

Based on the recent findings that tidal volume reduction is
protective in ARDS, there is renewed interest in HFOV. Com-
bined with a strategy of lung volume maintenance, HFOV
would potentially prevent excessive end inspiratory lung
volume and would maintain sufficient end expiratory lung
volume to a greater degree than conventional ventilation. Pre-
liminary data suggest that this method of ventilation is safe in
adults [73,74]. Ongoing studies are comparing HFOV com-
bined with lung volume maintenance to low tidal volume venti-
lation in children and adults. Previous negative studies of
HFOV in children have not always included a protocol for the
maintenance of lung volume [75].

Recognition of patients at risk for VALI
Although some workers have criticized the current definition
of acute lung injury and ARDS (Table 2) for not including a
measure of compliance, or for other reasons, it is of the
utmost importance to realize that the current definition was
used to select patients for the recent randomized, controlled
Acute Respiratory Distress Syndrome Network study. The
patients who meet the clinical criteria of the current definition
therefore benefited from the Acute Respiratory Distress Syn-
drome Network protocol of low tidal volume and relatively
high PEEP, regardless of lung compliance or the risk factor
for ARDS [4,76]. Whether one agrees with the current defini-
tion of acute lung injury and ARDS should not affect the deci-
sion to initiate this ventilation protocol in a patient meeting the
criteria presented in Table 2.

Summary
For the first time, clinicians have a well-defined therapeutic
intervention that reduces patient mortality from acute lung
injury and ARDS. Although the precise mechanisms of the
protective effect of low tidal volume ventilation are not fully
understood, clinical and experimental data suggest that exces-
sive strain and airspace epithelial shear stress amplify lung
inflammation, exacerbate barrier disruption, and promote
ongoing pulmonary edema formation. Early recognition of
patients with acute lung injury and ARDS (Table 2), and the
implementation of protective ventilation is critical if the mortal-
ity benefits observed in the recent Acute Respiratory Distress
Syndrome Network study are to be realized in clinical practice.
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