
Introduction

Anticoagulation is required to prevent clotting in the 

extra corporeal circuit during continuous renal replacement 

therapy (CRRT). Heparin is still the most commonly used 

anticoagulant to maintain circuit patency, especially since 

it is eff ective, instantaneous in its anticoagulation and 

cheap. However, bleeding is the main side eff ect, 

especially in critically ill patients [1]. Furthermore, the 

use of heparin is hampered by complex interactions with 

acute phase proteins and cells and by the potential 

development of heparin-induced thrombocytopenia. 

Heparin can also inhibit the anti-infl ammatory eff ects of 

antithrombin and trigger the release of infl ammatory 

mediators from blood and endothelial cells. Th is can lead 

to an unpredictable dose-eff ect relationship and an un-

controllable and potentially deleterious interference with 

pro- and anti-infl ammatory pathways [2]. Regional anti-

coagulation with citrate off ers an attractive alternative, 

but is still not standard care. Although citrate is primarily 

used for extracorporeal anticoagulation, it also has an 

eff ect on acid-base balance, energy supply and membrane-

induced infl ammation, and indirectly on parathyroid 

hormone (PTH) secretion. Th e aim of this narrative review 

is to describe the complexity of citrate anti coagulation, to 

review the science underlying clinical decision-making 

and to summarize the clinical benefi ts of citrate.

Mechanism of regional anticoagulation with citrate

Citrate acts by chelating calcium and therefore inhibits 

the clotting cascade at several levels. It provides regional 

anticoagulation, virtually restricted to the extracorporeal 

circuit. Citrate systems work on simple and shared 

modalities: a) pre-fi lter infusion of citrate, which chelates 

ionized calcium (ionCa2+; aiming for an ionCa2+ concen-

tra tion <0.35  mmol/L); b)  a replacement infusion of 

calcium at the end of the extracorporeal circuit or via a 

separate venous access to correct for the calcium loss 

into fi ltrate or calcium-free dialysate; and c) preferable

use of calcium-free dialysis or fi ltration fl uids. Some 

authors report the use of calcium-containing solutions. 

However, when used in hemodialysis or pre-dilution 
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hemo fi ltration, a higher citrate concentration in the fi lter 

(mmol citrate/L blood fl ow) is required to attain a similar 

degree of hypocalcemia in the circuit [3-8], and when 

administered for post-dilution in the venous chamber, 

the risk of local clotting is increased [9,10].

Whereas citrate causes a dose-dependent decrease of 

ionCa2+ concentration, the relationship between ionCa2+ 

concentration and the degree of anticoagulation is more 

complex. Citrate has almost no anticoagulant eff ect when 

ionCa2+ levels remain >0.50 mmol/l [11] or >0.56 mmol/L 

[12]. However, clotting times steeply increase when ionCa2+ 

levels decrease further. Below 0.25 [11] or 0.33 mmol/L [12] 

there is near total inhibition of coagulation.

Anticoagulation can be monitored by measuring post-

fi lter ionCa2+ with adjustment of citrate dose according to 

the desired calcium target. Other protocols are less 

complex and use a fi xed citrate dose proportional to 

blood fl ow targeting a citrate concentration in the fi lter of 

about 3 mmol/L [13,14].

Citrate is partially removed by fi ltration or dialysis. Its 

sieving coeffi  cient is about one for both dialysis and 

hemofi ltration [8]. Th e removed fraction varies between 

0.20 and 0.50 depending on the relationship between 

blood and effl  uent fl ow and on CRRT modality. Citrate 

requirements are lower with dialysis because, to achieve 

similar effl  uent doses, dialysis is possible with lower 

blood fl ows. Furthermore, dialysis removes a higher 

fraction of the infused citrate due to the higher ratio of 

effl  uent to blood fl ow [15]. In case of hemofi ltration, 

removal approaches fi ltration fraction. Th e remaining 

citrate enters the patient where coagulation is restored 

because a)  the circuit blood is diluted in the patient’s 

circulation and b)  citrate is rapidly metabolized in the 

mitochondrial citric acid cycle in liver, kidney and 

muscle, liberating the bound calcium. As a result, citrate 

has anticoagulant properties only within the circuit and 

not in the patient.

Citrate solutions and acid base eff ects

Th ere are numerous citrate solutions for daily practice. 

Th e choice depends on local availability, preferences 

regarding CRRT modality (pre- or post-dilution, diff u-

sion versus convection), legislation and available soft-

ware. None of the solutions have proven clinical superio-

rity, but the individual type of solution can have diff erent 

metabolic consequences [13,14].

In principle, citrate is infused either as a separate tri-

sodium citrate (TSC) [9,16-20], acid-citrate-dextrose 

(ACD) solution [4-7,21,22], or as a component of an 

isotonic citrate in saline with [23] or without citric acid 

[18] or of a balanced pre-dilution replacement fl uid 

[24-29] (Table  1). Although citrate is primarily used for 

extracorporeal anticoagu lation, it has profound eff ects on 

acid-base balance as well. Anticoagulant and acid-base 

eff ects are not directly related. Th e degree of anti-

coagulation depends on citrate dose and hypocalcemia 

(see above), while the eff ect on acid base state depends 

on metabolism of citrate and the ‘apparent strong ion 

diff erence’ of the solution (SIDa = [Na++K++Ca2++Mg2+] - 

[Cl- +citrate3-]) [30], that is, the type of cations opposing 

the citrate anion. For example, only two thirds of the 

cations in ACD solution are strong ions (that is, Na+). Th e 

buff er stre ngth of ACD is therefore lower than that of the 

pure TSC solution. Within the body, citrate is rapidly 

metabolized and the eff ective SID (SIDe) of the solution 

is [Na++ K++ Ca2++Mg2+] - [Cl-]. Th us, the alkalizing eff ect 

of the citrate solution depends on the metabolism of 

citrate. In clinical practice, the citrate dose is primarily 

titrated according to its anticoagulant eff ects 

(hypocalcemia). Th erefore, the buff er strength can be 

best compared between solutions when expressing SIDe 

per mmol citrate (Table 1).

Th e accompanying dialysis or replacement solutions 

should compensate for the sodium load and buff er 

strength of the citrate solution used and for the loss of 

calcium and magnesium. For this reason, the composition 

of the dialysis or replacement fl uids and their metabolic 

side eff ects diff er in the various citrate anticoagulation 

protocols [13,14]. Depending on the modality used, 

metabolic acidosis can be corrected by increasing citrate 

dose, effl  uent dose (removal of metabolic acids) or 

bicarbonate replacement, and metabolic alkalosis vice 

versa. It should be noted that when using the isotonic 

balanced citrate-containing pre-dilution replacement 

solution, anticoagulant dose and CRRT dose (effl  uent 

fl ow) cannot be adjusted separately [29,31]. When using a 

low-bicarbonate dialysis solution, acidosis is corrected by 

increasing citrate dose and decreasing dialysis fl ow [19]. 

To date, no studies have compared the diff erent 

modalities on clinical endpoints.

Clinical benefi ts of citrate

Clinical benefi ts of citrate are primarily related to less 

bleeding, a better circuit survival and lower requirement 

for blood products. A recent meta-analysis, including 6 

randomized controlled trials (RCTs) with a total of 488 

patients and data on 658 circuits, with a focus on safety 

and effi  cacy of citrate anticoagulation, found a longer 

circuit survival time and a reduced risk of bleeding [32]. 

Control anticoagulation used in the six diff erent studies 

was unfractionated heparin [10,17,20], low molecular 

weight heparin [9] or regional heparinization [33]. 

Metabolic derangements were similar to control anti-

coagulation and could be controlled easily. Notably, in 

the largest clinical trial, citrate anticoagulation was better 

tolerated than heparin [9]. It should also be noted that 

patients with an increased bleeding risk  - that is, those 

who are likely to benefi t most from citrate 
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anti coagu lation  - were not included in the randomized 

studies. Similarly, patients with liver failure were 

excluded and therefore results do not apply to this 

population either. In contrast to the above-mentioned 

meta-analysis, a repeat meta-analysis including the same 

six RCTs concluded that the effi  cacy of citrate and 

heparin for CRRT was similar, but citrate decreased the 

risk of bleeding with no signifi cant increase in the 

incidence of metabolic alka losis [34]. Th e main reason for 

the discrepant results related to circuit life was the 

diff erent way the authors handled the study by Betjes and 

colleagues [10], which did not report interquartile ranges 

of circuit survival. Zhang and colleagues [32] estimated 

the survival times by scaling the Kaplan-Meier curve. In 

contrast, Wu and colleagues [34] did not include this 

study in their circuit survival analysis.

Most of the studies on citrate anticoagulation are too 

small to evaluate patient outcome [13]. However, the 

largest (single center) trial (performed by one of the 

authors), including 200 critically ill patients, unexpect-

edly showed a 15% absolute increase in 3-month survival 

using an intention to treat analysis [9]. Among the higher 

proportion of surviving patients, there was a trend 

towards better renal recovery with more patients free 

from chronic dialysis in the citrate group (P = 0.08). Of 

note, the benefi t of citrate on survival could not be fully 

explained by less bleeding. Although citrate did not 

perform worse in any post hoc subgroup, it appeared 

particularly benefi cial in surgical patients, younger 

patients, patients with sepsis and in patients with more 

organ failure, suggesting either a protective role of citrate 

or harmful eff ects of heparin during infl ammation. A 

subsequent multi-centre RCT did not confi rm the 

survival benefi t with citrate [35]. However, this trial was 

smaller, included a younger patient population with less 

severe organ failure, used a diff erent citrate protocol, and 

had a short follow-up period and a high proportion of 

drop outs.

Bioenergetic consequences

Potential sources of CRRT-derived energy consist of 

citrate, glucose (in ACD) and lactate. Th eir respective 

caloric equivalents are 2.48  kJ (0.59  kcal), 3.06  kJ 

(0.73  kcal) and 1.37  kJ (0.33  kcal) per millimole. Net 

energetic gain depends on the dose infused and the 

amount removed by CRRT. Th e dose of citrate infused 

during hemodialysis is lower compared to hemofi ltration, 

not because of a better clearance with dialysis (sieving 

coeffi  cients approach 1 for both), but because hemo-

dialysis is feasible with lower blood fl ow rates [15]. 

Table  2 shows an estimate of the daily energy delivery 

when using diff erent modalities and citrate solutions for 

CRRT at a dose of 2 L/h. During continuous venovenous 

hemodialysis (CVVHD), energy delivery is lowest with 

TSC as citrate source and during pre-dilution CVVH 

using an isotonic citrate-containing replacement fl uid. 

ACD contains 139 mmol glucose/L. When used as citrate 

source, it provides about 350  kcal/day (1,466  kJ) during 

CVVHD and about 500  kcal/day (1,294  kJ) during post-

dilution CVVH. Lactate-containing replacement fl uids 

together with citrate [6,7] during CRRT at 2 L/h add about 

550 kcal (2,303 kJ) to daily energy delivery (Table 2).

Th e question is whether this energy delivery is 

benefi cial or harmful. First, some energy provision may 

be useful since it compensates for the losses of amino 

acids and small peptides during CRRT. Second, both 

citrate and lactate may be easy fuel under stress [36-40]. 

Neither rely on insulin to enter the cell and citrate can 

replenish the Krebs cycle when intermediates are scarce 

[41]. Substrate availability is a crucial regulator of the 

Krebs cycle. Citrate enters cells directly providing inter-

mediates to the cycle. Th ereby, citrate can restore 

Table 1. Composition and buff er strength of the diff erent citrate solutions 

 Separate citrate solutions Citrate-buff ered pre-dilution replacement fl uid

      Citrate in
 TSC TSC + Ca ACD-A TSC + Ca + NaCl TSC + NaCl balanced fl uid

Na+, mmol/L 210-3,000 1,352 224 136 140 140-159

H+, mmol/L (% of cations) None 148 115 (33) 6 None None

Citrate3-, mmol/L 68-1,000 450 (+50)a 113 10 (+2)b 18 or 23 13.3-20

Glucose, mmol/L None None 139 None None ±5

K+, mmol/L None None None None None 0-3

Mg2+, mmol/L None None None None None 0-0.75

Cl2-, mmol/L None None None 106 86 or 81 99-108

SIDec, mmol/L 3,000 1,352 224 30 54 33-54

SIDe per mmol citrate 3 2.7 2.0 3 3 2.25-3

aThe 50 citrate ions are from citric acid. bThe two citrate ions are from citric acid. cSIDe: eff ective strong ion diff erence as calculated after metabolism of citrate: 
(Na++K++Ca2++Mg2+) - (Cl-). ACD-A, acid citrate dextrose; Ca, citric acid; NaCl, saline; SIDe, eff ective strong ion diff erence; TSC, trisodium citrate.
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mito chondrial ATP and redox state under conditions of 

re perfusion after hypoxia [42] or limited substrate availa-

bility [43]. Lactate enters the mitochondria, where it is 

converted to pyruvate generating ATP, or enters the liver 

for gluconeogenesis. Th ird, glycolysis requires an initial 

investment of ATP before more ATP is produced [44]. 

Th erefore, when energy stores are depleted, citrate and 

lactate may be preferable over glucose [36-38]. On the 

other hand, using ACD as citrate source means that 90 to 

150 g of glucose is infused per day, because the solution 

provides 1.23 mmol glucose for each millimole of citrate. 

Th is degree of energy delivery may pose an unnecessary 

strain, especially when using ACD in combination with 

lactate-buff ered replacement fl uids [7]. It is important to 

be aware of the metabolic consequences of any type of 

fl uid used and to adjust nutritional intake when necessary 

[45].

Citrate and infl ammation

Hypocalcemia and reduction of infl ammation

Activation of neutrophils and platelets and the subse-

quent release of mediators from intracellular granules are 

regulated by cytosolic Ca2+, which acts as an intracellular 

messenger [46-49]. Cytosolic Ca2+ is maintained through 

mobilization from intracellular stores and an infl ux of 

extracellular Ca2+ via plasma membrane channels. Th ere-

fore, citrate-induced changes of the extracellular calcium 

concentration may have a direct eff ect on intra cellular 

Ca2+ signaling. Hypocalcemia in the fi lter not only down-

regulates membrane-induced infl ammation [50-53], but 

seems to reduce systemic infl ammation as well [54,55].

Several pro-infl ammatory actions of neutrophils are 

calcium-dependent. Among them are superoxide 

genera tion, adhesion, degranulation, phospholipase-A2 

activa tion and interleukin-8 synthesis [46]. We stimu-

lated isolated leukocytes under diff erent extra cellular 

calcium conditions with and without citrate, and found 

that inhibition of the cytosolic Ca2+ increase after 

stimulation with N-formyl-L-methionyl-L-leucyl-L-

phenyl alanine (fMLP) depends on the degree of extra-

cellular hypo calcemia and not on the presence of citrate. 

Typical results of a single experiment are presented in 

Figure 1. Th e eff ects of citrate on complement activation, 

especially seen when using the old unsubstituted 

Table 2. Globally estimated total energy delivery for three common CRRT settings, postdilution CVVH and CVVHD using 

diff erent citrate solutions with or without lactate replacement fl uids, and predilution CVVH at a CRRT dose of 2 L/h

 TSC solution ACD solution Balanced solution

   CVVH  CVVH  CVVH
   post-dilution CVVHD post-dilution CVVHD pre-dilution

CRRT settings

 QB ml/minute 150 100 150 100 150

 Citrate target mmol/L QB 4 4 4 4 3.7

 Citrate dose mmol/h 36 24 36 24 33

 CRRT dose ml/h 2,000 2,000 2,000 2,000 2,500a

 Removal Fraction 0.22 0.33 0.22 0.33 0

Delivery to the patient

 Citrate mmol/h 28 16 28 16.08 13

  kcal/h 14 8 14 8 7

  kJ/h 69 40 69 40 33

 Glucose mmol/h   34 20 

  kcal/h   25 14 

  kJ/h   105 61 

 Lactate mmol/h 70 70 70 70 

  kcal/h 23 23 23 23 

  kJ/h 96 96 96 96 

Total energy excluding lactate kcal/24 h 343 196 946 543 163

  kJ/24 h 1,667 952 4,196 2,410 4,852

Total energy including lactate kcal/24 h 897 750 1,501 1,098 

  kJ/24 h 3,968 3,254 6,497 4,711 

aPredilution dose is corrected for loss due to dilution. Caloric equivalents per millimole: citrate 2.48 kJ (0.59 kcal), glucose 3.06 kJ (0.73 kcal) and lactate 1.37 kJ 
(0.33kcal). ACD, acid citrate dextrose; CRRT, continuous renal replacement therapy; CVVH, continuous venovenous hemofi ltration; CVVHD continuous venovenous 
hemodialysis; QB, blood fl ow; TSC, trisodium citrate.
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cupro phane membranes, are not uniform; some studies 

found no eff ect [47,52,55], whereas others reported 

suppression of the complement cascade [50]. Comple-

ment activation and associated neutropenia seem to be 

mediated by a diff erent membrane receptor, not related to 

degranulation.

Avoidance of the non-anticoagulant eff ects of heparins on 

infl ammation

In addition to their anticoagulant eff ects, heparins have 

both pro- and anti-infl ammatory eff ects elicited by their 

binding to numerous proteins and cells. Th e balance of 

these eff ects likely depends on the site of heparin binding, 

on heparin dose and on the presence, type and severity of 

sepsis [56-58] and may be benefi cial [59-61], neutral [62], 

but totally unpredictable and potentially deleterious 

[58,63-67]. Anti-infl ammatory eff ects may be due to 

inhibition of the formation of thrombin. In addition, 

heparins may attenuate neutrophil-induced endothelial 

damage by inhibiting leukocyte adherence to the endo-

thelial cells as well as mast-cell activation by prevention 

of intracellular calcium release [56]. Pro-infl ammatory 

eff ects may primarily be due to the binding and inhibition 

of endothelial antithrombin, thereby preventing local 

prostacyclin formation (summarized in [2]) and hamper-

ing the microcirculation [66,67]. Furthermore, during 

sepsis, heparin may contribute to the inactivation of anti-

thrombin by elastase on vascular surfaces where neutro-

phils are sequestered [68]. Second, heparin can mobilize 

infl ammatory mediators, such as myeloperoxidase, 

lactoferrin, elastase and platelet factor-4, not only from 

circulating neutrophils, platelets and cells adhered to and 

activated by the dialysis membrane, but also from 

heparan sulfate like substances on the endothelial surface 

[64,65]. Th ird, heparin binds to lipopolysaccharide-

binding protein, and this process facilitates the transfer of 

lipopolysaccharide to the CD-14 receptor and augments 

endotoxin-induced activation of monocytes [58,67]. 

Finally, heparin avidly binds to discrete domains released 

from the nucleus onto the membrane of apoptotic or 

necrotic cells. Th ese heparin-binding sites on apoptotic 

cells signal phagocytotic clearance and heparin may thus 

actually delay such clearance [63]. Th erefore, by its 

binding to numerous proteins and cells, heparin induces 

unpredictable eff ects on many body functions and some  

of these may be harmful, especially during infl ammation.

Risks and limitations of citrate

Intoxication

Th e main risk of citrate anticoagulation is the unintended 

infusion of large amounts of citrate into the patient’s 

circu lation, which can lead to severe hypocalcemia, 

hypo tension due to decreased myocardial contractility 

and vascular tone, and eventually cardiac arrest. Th is 

poten tially severe adverse event can be instantaneously 

counter acted by calcium infusion. Unintended continued 

citrate infusion during the change of bags is usually not 

associated with clinical side eff ects, mainly because this 

amount is relatively low. However, the nursing staff  

should be aware of this potential risk. Fortunately, 

integrated software takes care of discontinuation of the 

citrate pump when bags are changed.

Accumulation

Th e main limitation of citrate anticoagulation is accu-

mulation as a result of reduced mitochondrial citrate 

metabolism. Reduced metabolism is seen in patients with 

liver failure due to decompensated chronic liver disease 

and also in those with ischemic hepatitis and poor muscle 

perfusion as seen in prolonged cardiogenic shock. Th e 

citrate molecule itself is not toxic, but the symptoms of 

citrate accumulation are due to secondary hypocalcemia 

and acidosis. Monitoring of the patient’s Ca2+ is therefore 

crucial. Ionized hypocalcemia is the most sensitive 

indicator of citrate accumulation [69]. While decreasing 

Ca2+, citrate accumulation concomitantly increases total 

calcium concentration, due to an increase in citrate-

bound calcium as well as calcium supplementation in 

response to ionized hypocalcemia. Th e total to ionized 

calcium ratio, therefore, is a useful marker to detect 

citrate accumulation [3,69,70] and seems the most speci fi c 

[69]. A rise in total to ionized calcium ratio >2.25 should 

trigger the clinician to consider citrate accu mulation. A 

recent prospective observational study in 208 critically ill 

Figure 1. Comparison of the intracellular calcium increase 

([Ca2+]i) in isolated leukocytes after in vitro stimulation with 

N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) at 

diff erent extracellular calcium concentrations with and without 

citrate. Green, 1 mmol/l EGTA, creating [ecCa2+] < 0.025 mmol/L; 

blue, 0.1 mmol ecCa2+/L; red, 4 mmol citrate/L added to a 1.75 mmol 

ecCa2+/L solution; black, 1.75 mmol ecCa2+/L. [Heemskerk JW, 

Feijge MA, Oudemans-van Straaten HM]
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medical patients receiving CRRT with regional citrate 

anticoagulation for acute kidney injury found that a ratio 

≥2.4 independently predicted a 33.5-fold increase in 

28-day mortality [71]. Failure to metabolize citrate there-

fore seems to indicate a high risk of dying. Citrate 

accumulation due to metabolic failure can lead to meta-

bolic acidosis. How ever, measurement of the anion gap is 

not helpful in this setting, mainly because citrate accu-

mulation due to metabolic failure tends to occur in 

situations where lactic acid accumulates too, that is, in 

the context of advanced liver disease or tissue hypoxia. In 

contrast, increased citrate infusion in patients with ade-

quate metabolism (that is, in the context of inadvertent 

protocol error or after polytransfusion) can lead to 

metabolic alkalosis.

Management of citrate accumulation includes 

a) decreas ing both citrate fl ow and blood fl ow if feasible, 

b) increasing citrate clearance (effl  uent fl ow), c) reducing 

or discontinuing citrate fl ow at the cost of anticoagulant 

activity (when citrate is part of the pre-dilution 

replacement, reduction of citrate dose is not an option, 

because the dose of anticoagulation and CRRT are 

coupled, and citrate should be replaced by bicarbo nate 

with or without heparin), d)  administration of intra-

venous calcium to correct hypocalcemia, and e) titrated 

replacement of bicarbonate to correct acidosis.

Other electrolyte disturbances

Systemic hypocalcemia during citrate anticoagulation 

may also be due to insuffi  cient replacement - for example, 

when calcium replacement is lower than calcium loss. In 

that case, both total and ionized calcium decrease. Th e 

risk of calcium loss across the membrane is particularly 

high when calcium-free dialysate or replacement fl uids 

are used. Although it may be rational to replace the lost 

amount of calcium, calcium replacement dose is generally 

adjusted according to actual systemic Ca2+ concen tra-

tions, which additionally refl ect trans-cellular shifts, such 

as the infl ux of extracellular Ca2+ upon infl ammatory 

stimuli [46,48]. Furthermore, the optimal ionCa2+ concen-

tration during critical illness is not known. Critically ill 

patients often have low ionCa2+ concentrations [72] and 

supplementation of calcium might be harmful [73]. An 

alternative target for calcium replacement might be 

normalization of the PTH concentration. Citrate also 

binds to magnesium and this may cause hypomagnesemia 

due to increased magnesium loss. Th e use of highly 

concentrated trisodium citrate solutions may lead to 

hypernatremia if the sodium content of the replacement 

solutions is not proportionally reduced.

Citrate in liver failure

Th e metabolism of citrate is diminished in patients with 

liver failure [74,75]. Unfortunately, citrate clearance 

cannot be reliably predicted from standard liver function 

tests. However, adjustment of dose and intensifi ed 

monitoring of ionized calcium levels seem to allow the 

safe use of citrate in patients with decompensated 

cirrhosis. Two recent studies showed the feasibility of 

citrate anticoagulation in patients with liver failure 

receiving treatment with a molecular absorbent 

recirculating system (MARS) [76,77]. In the observational 

study, the median citrate infusion rate was 3.1  mmol/L 

blood fl ow and median duration of treatment was 20  h 

[76]. Although the total to ionized calcium ratio 

increased signifi cantly, treatment was well tolerated. Th e 

second study was a randomized cross-over study com-

paring citrate anticoagulation with no anticoagulation. 

Out of 27 sessions, 4 had to be terminated prematurely 

but all 4 were in the no anticoagulation group [77]. Th e 

use of citrate was associated with a lower ionized calcium 

concentration, albeit without adverse events. It should be 

noted that the MARS treatments are intermittent. 

However, in a large prospective observational study 

includ ing 133 patients treated with citrate-based conti-

nuous venovenous hemodialysis for 72  hours, citrate 

anticoagulation was well tolerated in 86 patients with 

liver dysfunction as defi ned by a bilirubin >2 mg/dl [78]. 

Only 2% of patients developed an increased total to 

ionized calcium ratio (≥2.5).

Citrate in shock with lactate acidosis

Citrate metabolism occurs primarily in liver and muscle. 

A high lactate concentration in patients with shock at the 

start of CRRT should raise awareness of the risk of citrate 

accumulation, because this may indicate mitochondrial 

dysfunction. Nevertheless, clinical practice shows that a 

considerable proportion of patients with shock do 

tolerate citrate anticoagulation, especially those with 

septic shock and high lactate levels if circulation 

improves. In the randomized controlled trial by one of 

the authors, only one patient developed signs of citrate 

accumulation [9]. However, citrate is likely to accumulate 

in patients with persistent severe heart failure, ischemic 

hepatitis and poor muscle perfusion, because the Krebs 

cycle only operates under aerobic conditions. In these 

cases, intensifi ed monitoring of the total to ionized 

calcium ratio and acid base balance is advised (2-hourly 

at start), and citrate infusion should be reduced or 

discontinued when calcium ratio increases above 2.25 to 

2.5.

Eff ects on bone metabolism

Systemic hypocalcemia is a potent stimulus for PTH 

secretion. In normal subjects, a decrease in serum 

ionized calcium of as little as 0.025  mmol/L leads to 

release of preformed PTH within minutes, followed by an 

increased production of biologically active PTH. Th e 
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immediate eff ect of PTH is to mobilize calcium from 

skeletal stores. In patients with normal kidney function, 

PTH also increases tubular calcium reabsorption and 

stimulates the conversion of 25-hydroxyvitamin D3 to 

1.25-dihydroxyvitamin D3. In critically ill patients with 

acute kidney injury, the renal eff ects of PTH may be 

negligible, but concern about the potential harmful 

eff ects on bone metabolism has been expressed [79]. 

Th ree studies in critically ill patients with acute kidney 

injury reported a negative calcium balance and signifi cant 

rise in intact PTH levels during citrate-based CRRT 

when aiming for systemic ionized calcium levels between 

0.8 and 1.1  mmol/L [79-81]. Th e exact signifi cance of 

PTH secretion during critical illness remains uncertain 

but severe bone reabsorption has been described during 

prolonged citrate-based CRRT. Adequate calcium 

replace ment may be crucial for preventing bone loss.

Strategies to increase the safety of citrate

Th e full advantage of citrate can only be realized if its 

risks are well appreciated and controlled. Safe intro-

duction of citrate starts with the choice of a well-designed 

and fl exible protocol with proven effi  cacy, adjusted to the 

preferences for CRRT modality and dose, and availability 

of fl uids and devices. Strict adherence to the protocol and 

its algorithms can prevent metabolic derangement. Safe 

implementation of citrate requires focused training of all 

staff  involved, the availability of ionized calcium 

measure ment 24 h a day and attention to detail. Th e risk 

of citrate intoxication can be avoided by using CRRT 

machines with integrated software that interrupt citrate 

infusion when the blood pump stops and also by 

preventing the unintended mix-up of citrate bags and 

crystalloid infusion bags by markedly diff erent labeling. 

Intensifi ed monitoring of ionized calcium is needed in 

patients with risk of accumulation. Patient safety can be 

improved by ‘pop-up’ alerts in the patient data 

management system, continuous monitoring of citrate 

and ionized calcium concentrations, and computerized 

algorithms predicting systemic and post-fi lter total or 

ionized calcium concentrations [82-84].

Conclusion

Evidence is accumulating that regional anticoagulation of 

the CRRT circuit with citrate is feasible and safe in 

critically ill patients. Compared to heparin, citrate anti-

coagulation reduces the risk of bleeding and associated 

blood transfusion, not only in patients with an increased 

risk of bleeding but also in those without. Metabolic 

complications depend on the type of fl uids used and are 

largely prevented by the use of a strict protocol, training 

and integrated citrate software. Recent studies indicate 

that citrate can even be used in patients with (acute-on-

chronic) liver failure when monitoring is intensifi ed and 

dose is carefully adjusted. Patients at greatest risk of 

accumulation are those with persistent poor tissue 

perfusion and lactic acidosis, since citrate metabolism is 

oxygen dependent. Th e use of citrate may additionally be 

associated with less infl ammation due to hypocalcemia at 

the membrane and also by avoiding the therapeutic use 

of heparin. Whether these benefi cial eff ects increase 

patient survival needs to be confi rmed. However, its 

other benefi ts are reason enough [85] to make citrate the 

fi rst choice anticoagulant for CRRT provided that its safe 

use can be guaranteed.
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