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Abstract

Introduction: Diagnosis of severe influenza pneumonia remains challenging because of a lack of correlation
between the presence of influenza virus and clinical status. We conducted gene-expression profiling in the whole
blood of critically ill patients to identify a gene signature that would allow clinicians to distinguish influenza
infection from other causes of severe respiratory failure, such as bacterial pneumonia, and noninfective systemic
inflammatory response syndrome.

Methods: Whole-blood samples were collected from critically ill individuals and assayed on Illumina HT-12 gene-
expression beadarrays. Differentially expressed genes were determined by linear mixed-model analysis and
overrepresented biological pathways determined by using GeneGo MetaCore.

Results: The gene-expression profile of H1N1 influenza A pneumonia was distinctly different from those of
bacterial pneumonia and systemic inflammatory response syndrome. The influenza gene-expression profile is
characterized by upregulation of genes from cell-cycle regulation, apoptosis, and DNA-damage-response pathways.
In contrast, no distinctive gene-expression signature was found in patients with bacterial pneumonia or systemic
inflammatory response syndrome. The gene-expression profile of influenza infection persisted through 5 days of
follow-up. Furthermore, in patients with primary H1N1 influenza A infection in whom bacterial co-infection
subsequently developed, the influenza gene-expression signature remained unaltered, despite the presence of a
superimposed bacterial infection.

Conclusions: The whole-blood expression-profiling data indicate that the host response to influenza pneumonia is
distinctly different from that caused by bacterial pathogens. This information may speed the identification of the
cause of infection in patients presenting with severe respiratory failure, allowing appropriate patient care to be
undertaken more rapidly.

Introduction
The 2009 H1N1 influenza A pandemic reemphasised the
important role of respiratory viruses as causes of severe
pneumonia. According to World Health Organisation
estimates, 450 million cases of pneumonia are recorded
every year, and about 4 million people die of this illness
[1,2]. In the United States alone, the economic burden of
community-acquired pneumonia has been estimated to

be more than US$17 billion per annum [3]. The ability to
identify patients with viral pneumonia correctly has
important patient-management implications, but remains
a challenge. Several studies, including [4,5], have shown
that the protein biomarkers procalcitonin and C-reactive
protein are typically lower in respiratory infections
caused by viral as opposed to bacterial infections. These
studies, however, were preliminary and consisted of small
sample sizes. Attempts also have been made to distin-
guish clinically between bacterial and influenza pneumo-
nia, by using a combination of variables such as age,
mental orientation, temperature, leukocyte count, and
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chest-radiograph findings [6]. However, the clinical signs
and symptoms of bacterial and viral pneumonia can over-
lap and are often confounded by underlying conditions
such as immunosuppression and extrapulmonary compli-
cations [7-9]. When these individuals present with com-
munity-acquired pneumonia, it is difficult to determine
which organism is the causative pathogen (bacterial
versus viral).
Assessing the immune response at a gene-expression

level may assist in the diagnosis as well as the under-
standing of the response to pulmonary infections caused
by viral compared with bacterial pathogens. We pre-
viously showed that in influenza infection, the presence
of an abnormal immune response at the gene-expression
level is associated with the development of clinical symp-
toms [10]. Further, we showed that changes in this
immune response correlate well with the progression to
respiratory failure in infected patients. However, it is not
known whether this immune-response signature is speci-
fic to influenza infection, or merely a part of a generic
host response to infection. Therefore, the aim of this
study was to investigate whether a gene-expression signa-
ture is present in individuals with severe influenza pneu-
monia, and whether this immune-response signature is
distinct from other conditions that share a similar clinical
presentation, such as bacterial pneumonia or systemic
inflammation due to noninfectious causes.

Materials and methods
Subjects
The study included a total of 39 patients and 18 healthy
volunteers. Patients with severe community-acquired
pneumonia requiring intensive care unit (ICU) admis-
sion were enrolled in the study. Patients with noninfec-
tive systemic inflammatory response syndrome (SIRS)
also were enrolled (n = 12). The study was approved by
the Sydney West Area Health Service Human Research
Ethics Committee, and informed written consent was
obtained from all patients or their relatives. Influenza A
H1N1 2009 pneumonia (n = 8) was confirmed by using
polymerase chain reaction (PCR), and bacterial pneumo-
nia (n = 16) by microbiological cultures. Three addi-
tional patients were included in the study as a separate
group, as they had positive pathology results for both
H1N1 influenza A and bacterial infection. Healthy
volunteers (n = 18) were enrolled in the study as con-
trols. The diagnosis of severe community-acquired
pneumonia (caused by bacteria or influenza infection) or
SIRS was established at the end of the patient’s hospital
stay (or after death). SIRS was defined as the presence
of at least two of the following four clinical criteria: (a)
fever or hypothermia (temperature > 100.4°F (38°C) or <
96.8°F (36°C)); (b) tachycardia (> 90 beats/min), (c)
tachypnea (> 20 breaths/min or PaCO2 < 4.3 kPa (32

mm Hg)), or the need for mechanical ventilation; (d) an
altered white blood cell count of > 12,000 cells/μl,
< 4,000 cells/μl, or the presence of > 10% band forms.
Pneumonia was defined as a microbiologically confirmed
infection of the lungs, resulting in the patient fulfilling
the SIRS criteria. The diagnosis was ascertained by
using all the information available in the patient’s medi-
cal records. This information included microbiology
reports, PCR results, image studies (for example, com-
puted tomography scans), surgical findings, tissue histo-
pathology reports, and response to antibiotics. The
physician who determined the reference diagnosis was
blind to the results of the microarray analysis. Whole-
blood samples were drawn from all subjects. The first
sample from each patient was collected within the initial
24 hours of admission to the ICU, henceforth referred
to as day 1. Patients were monitored for up to 5 days to
assess their longitudinal gene-expression profiles. Sam-
pling was performed only on days 1 and 5 in the healthy
control cohort, as we did not expect significant changes
in gene-expression profiles from day to day. For criti-
cally ill individuals, clinical characteristics, including
APACHE II (Acute Physiology And Chronic Health Eva-
luation score II [11]), age, gender, comorbidities, length
of ICU stay, and mortality, were collected.

Gene-expression profiling
Whole-blood samples were collected into PAXgene tubes
and immediately stored at -20°C. RNA extraction was
performed by using the standard protocol (PAXgene
Blood RNA kit, Qiagen, Hilden, Germany). RNA quality
was analyzed by using Agilent 2100 Bioanalyser (Agilent
Technologies, Santa Clara, CA, USA), and all samples
obtained an RNA integrity number of greater than 6.5,
indicating high sample quality. Extracted RNA was stored
at minus 80°C until expression profiling, by using Illu-
mina Sentrix HT-12_v3_BeadChip arrays (Illumina, San
Diego, CA, USA). Sample amplification and labeling was
carried out on 200 ng of total RNA by using an Illumina
TotalPrep Amplification kit (Ambion, Austin, TX, USA).
Amplified complementary RNA was assessed by using
the Agilent 2100 Bioanalyser, to ensure satisfactory
amplification. The samples were then immediately hybri-
dized onto HT-12_v3_BeadChips; 750 ng of each sample
was loaded onto the arrays. The hybridization and wash-
ing procedure was identical for each set of arrays pro-
cessed. To minimize experimental artefacts, all of the
RNA extraction, sample amplification and labeling, hybri-
dization and washing, and scanning procedures were car-
ried out by the same operator, at the same time of day.
After raw-data processing and normalization, no signifi-
cant batch effects were identified. Therefore, no addi-
tional adjustment of the microarray data was required.
The microarray data discussed here have been deposited
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in the NCBI Gene Expression Omnibus [12] and are
accessible through GEO Series accession number
GSE40012 [13].

Bioinformatic workflow
Raw data obtained by scanning of the microarray slides
were processed by using Illumina GenomeStudio
V2010.3. Each probe on the array was passed through a
filter requiring a detection P value of < 0.0050 in at least
one sample to be included in any further analyses. Of the
48,804 probes present on the Illumina HT 12 array,
24,840 probes (henceforth referred to as genes) passed
this criterion. Genes that passed the filtering were loaded
into BRB ArrayTools [14], in which quantile normaliza-
tion and log transformation of the data were applied.
Validation of the microarray experiment was performed
by measuring the expression relative to GAPDH for a
subset of genes, by using qRT-PCR. The R2 values
obtained when comparing qRT-PCR and microarray rela-
tive fold-changes ranged from 0.67 to 0.83, indicating
strong concordance between the two platforms.
Normalized and log-transformed data were imported

into R (v2.12). Genes with low variance across all samples,
defined to be less than the median, were removed from
the dataset. This left 12,420 genes to be used for statistical
analyses. Each patient phenotype was compared with the
healthy control cohort by fitting a linear mixed model to
each gene by using the R library lme4. Patient phenotype,
day of ICU stay, gender, age, patient ID, and APACHEII
score (disease severity) were all included in the model as
independent variables. This allowed the selection of genes
significant for phenotype after accounting for each of the
other terms in the model. P values were adjusted for mul-
tiple testing by using the Benjamini and Hochberg False
Discovery Rate (FDR) method [15] (R library multitest).
An FDR of 5% was used as the cut-off for genes deemed
to be differentially expressed between the two classes.
Differentially expressed gene lists were uploaded into

GeneGo Metacore (St. Joseph, MI, USA), an integrated
software suite for functional analysis of gene-expression
data. With GeneGo MetaCore, biological pathway analysis
was performed on each gene list. Pathway analysis
involved matching a list of prespecified genes onto canonic
pathways or networks and calculating the statistical rele-
vance of the matches found. An FDR of 5% was used as
the cut-off to determine whether a pathway was statisti-
cally overrepresented in the gene list.
To identify the particular immune cell subsets contri-

buting to genes dysregulated in response to influenza and
bacterial pneumonia, we performed a process referred to
as immune cell deconvolution. First, the top 100 genes
sorted by statistical significance were determined for
genes upregulated in H1N1 influenza A pneumonia and
also for genes upregulated in bacterial pneumonia. Each

of the genes in these lists was subsequently searched for
by using the ImmGen database [16] to assess their
immune cell subset-specific expression. A gene was said
to tag a particular immune-cell type if it was overex-
pressed in fewer than four different immune-cell types.
A Fisher Exact test was used to determine whether any
significant difference existed in proportion of immune
cell-tagging genes in genes expressed higher in H1N1
influenza A pneumonia compared with genes expressed
higher in bacterial pneumonia patients.
To test for the enrichment of a list of known inter-

feron-stimulated genes [17] in the influenza and bacterial
pneumonia groups, a technique called Gene Set Enrich-
ment Analysis was performed [18,19]. Gene Set Enrich-
ment Analysis was performed on gene lists created by
ranking genes by the P value generated for phenotype in
the linear mixed-model analyses from most significant to
least significant.
To quantify further the differences in gene-expression

pattern of the H1N1 influenza A and bacterial pneumo-
nia samples on day 1 of admission to ICU, a Support
Vector Machines (SVM) class predictor was built [20].
A P value of 1E-5 was chosen as the optimal threshold
for deciding the genes to be included in the class predic-
tor for distinguishing day 1 samples of H1N1 influenza A
pneumonia and bacterial pneumonia. A more-stringent P
value threshold resulted in a reduction of the number of
genes used in the class predictor; however, this also
resulted in a reduction of the mean percentage of correct
classification. See Additional file 1, Table S1, for the
P-value thresholds tested and the resulting number of
genes used, as well as the mean percentage of correct
classification for each class predictor. Performance of the
class predictor was assessed in the training dataset by
using the leave-one-out cross-validation method [21] and
was also assessed in two independent datasets [22,23].
The first independent dataset, published by Ramilo et al.
[22], consists of peripheral blood mononuclear cell sam-
ples of bacterial sepsis and influenza A and B patients.
The second dataset, published by Bermejo-Martin et al.
[23], consists of PAXgene whole-blood samples from
individuals with severe H1N1 influenza A pneumonia,
compared with healthy controls. By using the weightings
and the threshold determined in the training set, the
SVM integer was plotted for each of the samples in the
two independent validation cohorts. The SVM integer
was calculated by multiplying the predetermined weight
for each gene by its corresponding expression level, and
adding these values for each of the genes in the class pre-
dictor. Biological pathway analysis and immune cell
deconvolution was carried out on the gene-list used to
build the class predictor.
A cluster analysis was performed to visualize the differ-

ence in expression profile between samples collected
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from patients with concurrent bacterial and H1N1 influ-
enza A infections as opposed to SIRS, bacterial pneu-
monia, or H1N1 influenza A pneumonia patients. A
clustering dendrogram was generated by using the genes
used to build the SVM class predictor, by using euclidean
distance and average linkage metrics. The dendrogram
included day 1 samples of the bacterial and H1N1 influ-
enza A groups as well as day 1 samples for three patients
with concurrent bacterial and H1N1 influenza A infec-
tions. Day 1 samples from the noninfectious SIRS cohort
also were included.

Results
Characteristics of each of the patient groups are summar-
ized in Table 1. For each of the bacterial pneumonia
patients, the pathogen responsible for infection and the
specimen from which the result was obtained is listed in
Additional file 1, Table S2. No difference in the severity
of illness (as measured by APACHE II scores) was found
for patients in the bacterial pneumonia compared with
the H1N1 influenza A pneumonia group (P = 0.82). The
mean age of bacterial pneumonia patients was higher
than that of the influenza A patients (P = 0.00040). We
therefore incorporated age as a covariate in the linear
mixed-model analysis. All results reported henceforth
have accounted for the difference in age between groups.
The linear mixed-model analysis showed that changes

in levels of gene expression were determined by patient
phenotype (H1N1 influenza A, bacteria, or SIRS). Other
variables, such as disease severity, day of ICU stay, and

patient age, were not associated with any change in gene-
expression levels. With the exception of Y-linked genes
RPS4Y1, JARID1D, EIF1AY, UTY, and RPS4Y2, patient
gender was not found to influence gene-expression levels.
Each phenotype was associated with significant changes
in gene expression in a large number of genes, as sum-
marized in Table 2.
Venn diagrams reveal overlaps in the lists of upregu-

lated and downregulated genes compared with healthy
controls for the three patient phenotypes (Figure 1A, B).
At 5% FDR, 1,350 genes were upregulated compared with
healthy controls in all three patient phenotypes. Biologi-
cal pathways overrepresented in these genes included
apoptosis (p = 4.4E-8), immune system response (P =
4.3E-6), DNA-damage response (P = 1.4E-5), and inflam-
matory response (P = 6.8E-5).
A distinct gene-expression profile was found for the

H1N1 influenza A group. This gene-expression profile is
found predominantly in the upregulated genes (Figure 1A).
Biological pathway analysis of the 1,416 genes uniquely
upregulated in H1N1 influenza A infection revealed over-
representation of pathways related to the cell cycle and its
regulation (p = 4.2E-20), DNA-damage response (P = 4.2E-
9), apoptosis (P = 1.3E-4), and protein degradation (P =
4.1E-4). Figure 2 lists the top overrepresented biological
pathways in the order of statistical significance.
In contrast to influenza A infection, a gene-expression

signature was not found in bacterial pneumonia. The
genes uniquely upregulated in response to bacterial
pneumonia (n = 253) were not overrepresented in any

Table 1 Characteristics of the individuals included in the study

H1N1 influenza A Bacterial pneumonia SIRS Mixed influenza A/bacterial pneumonia Healthy control

Demographics

Number in group 8 16 12 3 18

Age (years) 34 ± 12 62 ± 13 61 ± 16 39 ± 13 43 ± 16

Male/Female 3/5 7/9 10/2 1/2 6/12

Comorbidities (%)

Hypertension 12.5 31.3 58.3 0 16.6

Heart disease 0 37.5 33.3 33.3 0

Diabetes 12.5 12.5 25.0 0 0

COPD 25 37.5 16.7 0 0

Cancer 0 12.5 0 0 0

Trauma 0 0 8.3 0 0

Recent surgery (last 7 days) 0 6.25 33.3 33.3 0

Severity of disease

Mortality (%) 0 31.3 0 0 NA

APACHE II 15 ± 3.8 18 ± 6.6 16 ± 4.5 18 ± 5.6 NA

Treatment (%)

Mechanical ventilation 100 93.8 75 100 NA

Renal dialysis 12.5 6.3 8.3 33.3 NA

Vasopressor therapy 62.5 56.3 16.7 66.6 NA

APACHE II, Acute Physiology And Chronic Health Evaluation score [11]; COPD, chronic obstructive pulmonary disease; SIRS, systemic inflammatory response
syndrome. Plus-minus values are median ± standard deviation.
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biological pathway or network ontology, implying a gen-
eric inflammatory and immune response, but no specific
response to bacterial infection.
A larger number of genes were upregulated in SIRS

(586 genes). Further analysis showed that they were
overrepresented in multiple biological pathway and net-
work ontologies, including inflammatory response (P =
6.3E-6), cell differentiation (P = 1.6E-5), angiogenesis
(P = 1.1E-4), and immune system response (P = 2.6E-4).
This is consistent with the known biology of SIRS,
which is a nonspecific host response to a variety of
stresses, including trauma, surgery, and infection.
A large number of genes were downregulated in H1N1

influenza A infection, bacterial infection, and SIRS
groups (Figure 1B). Biological pathway analysis of the
downregulated genes was performed for each of the three
patient phenotypes (Figure 3). In the H1N1 influenza A
group (934 unique genes), many genes were overrepre-
sented in inflammatory-response and immune system-
response pathways. Further interrogation into the
immune-response pathways showed that activation and
signaling pathways of interleukins (IL-8, IL-2, IL-15, IL-6,

IL-10, IL-7, IL-3, IL-13, IL-17, and IL-23) were heavily
overrepresented in the downregulated gene list. This sug-
gests a significant degree of immunosuppression in
severe H1N1 influenza A infection. In contrast, the
degree of downregulation in biological pathways was
considerably less in both the bacterial-infection and the
SIRS groups (Figure 3).
Pathway analysis of the direct comparison between the

H1N1 influenza A and bacterial groups revealed a con-
sistent picture, with 671 genes upregulated in H1N1
influenza A compared with bacterial (by using linear
mixed model, 5% FDR) showing remarkable overrepre-
sentation in the cell cycle and its regulation ontology
(P = 2.9E-20). The DNA-damage response was also
highly enriched in this list of genes (P = 6.9E-10). No
such overrepresentation was seen for cell-cycle pathways
in the 78 genes expressed at higher levels in the bacter-
ial infection group (P = 0.35). The biological pathways
overrepresented by these 78 genes include immune and
inflammatory responses. However, these immune/
inflammatory genes are also upregulated in SIRS and
are therefore not specific to bacterial pneumonia.
The immune cell subsets that gave rise to most of the

gene-expression signals outlined earlier are shown in
Figure 4, as revealed by immune cell deconvolution. Far
more neutrophil-tagging genes were upregulated in the
bacterial group compared with the H1N1 influenza A
pneumonia (P = 2.4E-17). Conversely, a greater represen-
tation of T-helper cell-tagging genes was found in the
top 100 upregulated genes for H1N1 influenza A pneu-
monia (P = 2.1E-11). In addition, B-cell genes were

Table 2 Number of genes up- and downregulated for
each patient phenotype, compared with healthy controls

Comparison (n versus n) Up Down FDR

H1N1 influenza A versus healthy control (8 versus
18)

3,244 2,902 5%

Bacteria versus healthy control (16 versus 18) 2,434 2,661 5%

SIRS versus healthy control (12 versus 18) 2,775 2,973 5%

Figure 1 Overlap of differentially expressed genes in H1N1 influenza A pneumonia, bacterial pneumonia, and noninfective systemic
inflammatory response syndrome. Venn diagrams for genes upregulated (A) and genes downregulated (B) compared with healthy controls,
at 5% false-discovery rate. H1N1 influenza A pneumonia (H1N1), bacterial pneumonia (Bacteria), noninfective systemic inflammatory response
syndrome (SIRS).
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significantly overrepresented in the H1N1 influenza A
pneumonia group compared with the bacterial group (P
= 0.0062). These findings are consistent with the known
biology of infection, in which bacterial infection is driven

by a neutrophil-dominant response, and viral infection is
driven by a lymphocyte-dominant response. Across the 5
days of patient follow-up, the expression level of T-helper
cell-tagging genes is consistently higher in H1N1

Figure 2 The top-ranking biological pathways in genes upregulated in H1N1 influenza A infection, ordered by statistical significance
(with cell cycle being the most significant among the top 10 pathways).
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influenza A, whereas the expression level of the neutro-
phil-tagging genes is consistently higher in the bacterial
group, as shown in Figure 5.

A group of genes well known to be associated with viral
infection, referred to as interferon-stimulated genes, were
highly represented in the H1N1 influenza A gene signature.

Figure 3 Representation of biological pathway ontologies in the downregulated genes at 5% false discovery rate (FDR) for H1N1
influenza A, bacterial pneumonia, and systemic inflammatory response syndrome (SIRS), compared with healthy controls.

Figure 4 Immune cell deconvolution of the top 100 upregulated genes for bacterial pneumonia and H1N1 influenza A pneumonia,
compared with healthy controls. Fisher Exact test two-tailed P values are given for cell types with significantly different proportions between
the two groups.
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With Gene Set Enrichment Analysis, the interferon-stimu-
lated genes were shown to be significantly enriched in the
genes overexpressed in H1N1 influenza A pneumonia,
compared with healthy controls (FDR = 0.0010). In con-
trast, even at a 5% FDR, no significance was observed for
interferon-stimulated genes among genes overexpressed in
bacterial pneumonia, compared with healthy controls (FDR
= 0.080). We repeated the analysis by directly comparing
the bacterial and H1N1 influenza A groups. Again, a highly
significant enrichment of the interferon-stimulated genes
was noted in genes overexpressed in the H1N1 influenza A
group (FDR = 0.0010) but not for genes overexpressed in
the bacterial group (FDR = 0.97).
Because the H1N1 influenza A infection group dis-

played a gene-expression profile distinctively different
from that of bacterial infection, we explored the potential
of using the gene-expression profile to diagnose H1N1
influenza A infection. By using an SVM algorithm, we
found a 29-gene class predictor to be highly accurate in
discriminating H1N1 influenza A infection from bacterial

pneumonia (Figure 6). This ability to discriminate
between bacterial and viral infection was consistent
across the 5 days of patient follow-up (see Additional file
1, Figures S1 and S2). When this class predictor was
tested on two independent datasets, it was shown to pro-
vide clear separation of both H1N1 influenza A pneumo-
nia patients from a healthy control cohort, and bacterial
pneumonia patients from a cohort of patients containing
both influenza A- and influenza B-infected individuals.
These results support the robustness of the class predic-
tor, as clear separation was observed in independent
datasets generated by using different microarray plat-
forms and normalization methods.
Surprisingly low overlap is found when comparing the

29-gene class predictor presented in this study with the
class predictors presented in previous studies by Zaas et
al. [24] (30 genes), and Ramilo et al. [22] (35 genes).
Only five genes are present in more than one of the
three-gene signature lists: IFI44, LY6E, MX1, OAS1, and
IFI27 (see Additional file 1, Table S3). Notably, each of

Figure 5 Expression of neutrophil and T-helper cell-specific genes across 5 days for H1N1 influenza A pneumonia and bacterial
pneumonia patients. Intensity of red corresponds to level of upregulation, whereas intensity of green refers to level of downregulation.
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these five genes is a well-established interferon-inducible
gene.
Further analysis of the 29-gene signature showed over-

representation in biological pathways related to the cell
cycle and its regulation (P = 2.1E-4). Specific cell-cycle
pathways overrepresented were transition and termina-
tion of DNA replication (P = 7.1E-4) and start of DNA
replication in early S phase (P = 9.3E-4). No other path-
way ontology was significantly overrepresented in the 29-
gene signature. Immune cell deconvolution of the 29-
gene signature revealed that 14 of the 29 genes were pre-
dominantly expressed in T-helper cells. This finding sug-
gests that the 29-gene signature reflects the T-cell
response during influenza infection.
The diagnostic performance of the 29-gene signature to

identify viral infection remained high even for patients with
concurrent bacterial coinfection. We performed an analysis
on blood samples of three patients who had both H1N1
influenza A infection and superimposed bacterial infection.
Figure 7 shows the cluster analysis after these new samples
were incorporated into our original dataset. With the 29-
gene signature, all the H1N1 influenza A samples fell into
the first cluster, whereas the bacterial or SIRS samples

were grouped in a second cluster. Importantly, all three
patients with viral and bacterial coinfection were in the
H1N1 influenza A group. This suggests that the 29-gene
viral signature is not affected by the presence of a bacterial
coinfection. One of these three patients had an additional
sample collected on day 13. At this point, the H1N1 influ-
enza A pneumonia had been resolved; however, the bacter-
ial infection remained. We note with interest that the day-
13 sample was more similar to the bacterial infection
cohort in its gene-expression profile. The repeated cluster
analysis on day 13 showed that this patient had migrated
to the bacterial and SIRS cluster (data not shown).

Discussion
Our whole-blood expression profiling data indicate that
H1N1 influenza A pneumonia has an immune response
detectable at a gene-expression level. This immune
response persists beyond the first 24 hours of admission
to the ICU and was present throughout 5 days of follow-
up. In addition, the H1N1 influenza A signature was
highly consistent, as it remained detectable in a subset of
patients with concurrent bacterial infection. Furthermore,
this signature is highly specific to viral pneumonia

Figure 6 The Support Vector Machines (SVM) class-prediction integer in training and validation datasets. The x-axis corresponds to the
threshold of 36.03, with all samples falling above the line predicted as belonging to an individual with influenza infection. Correctly predicted
samples are shaded blue; incorrectly predicted samples are shaded red.
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(influenza A), because it is distinctively different from the
gene-expression profile of bacterial pneumonia, or any
conditions that may mimic an inflammatory host
response. Our data therefore provide proof-of-concept
evidence that gene-expression profiling may identify the
etiology of acute pulmonary infection in critically ill
patients, allowing more-specific patient care.
Our study addresses an important issue in the current

diagnosis of influenza infection. The current diagnosis in
critically ill patients is difficult because of a lack of correla-
tion between influenza virus antigen test and clinical sta-
tus. For example, many influenza-infected individuals test
negative for influenza virus [25]. Our study showed that
the key to diagnosis is the presence of an abnormal
immune response associated with influenza virus. This
makes biological sense because it is the abnormal immune
response that determines the progression to a more-severe
illness, or sometimes, death. The 29-gene signature reflects
the virus-specific host immune response. This allows influ-
enza infection to be diagnosed correctly, independent of
the result of the viral antigen test. Furthermore, the persis-
tence of the 29-gene signature over time makes it possible
to diagnose viral pneumonia for at least 5 days after ICU
admission. Many critically ill patients present late, often
with impending respiratory failure. By this stage, the viral
shedding is minimal, and the pick-up rate for viral antigen

testing is low. Another useful application of our gene-
expression signature will be to assist the diagnosis in
patients with bacterial coinfection. During the influenza
season, many patients with bacterial pneumonia also test
positive for the influenza virus, making it difficult to ascer-
tain the etiology of the infection. The 29-gene viral gene
signature has the potential to resolve diagnostic uncer-
tainty in this situation by directly demonstrating the pre-
sence of a virus-specific immune response. These results
warrant further exploration in a future diagnostic study in
which the gene-expression signature can be validated in a
large independent patient cohort.
Deconvolution of whole-blood gene-expression data, a

novel method developed to gain insight into immune
cell-subset gene expression [10,26,27], revealed a strong
representation of T-helper cell-expressed genes upregu-
lated in the whole-blood gene signature for H1N1 influ-
enza A. Previous findings reported that H1N1 influenza
A infection was characterized by a T-helper cell response,
in particular type 1 and type 17 T-helper cells [28]. Con-
versely, a lack of T-helper cell response was noted in the
bacterial pneumonia gene signature, which was charac-
terized by large representation of neutrophil-expressed
genes. This finding reinforces our finding that our 29-
gene viral signature reflects the actual immune response
of the host during influenza infection.

Figure 7 Dendrogram for clustering bacterial (CAP), H1N1 influenza A (H1N1), systemic inflammatory response syndrome (SIRS), and
concurrent bacterial and H1N1 influenza A infection (CAP+H1N1) patients for the 29-gene signature by using Euclidean distance and
average linkage (all samples were obtained on day 1).
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Our study also revealed two surprising new findings.
First, immune and inflammatory pathways genes have
been traditionally thought of as the main determinants of
host response to influenza infection. Our findings show
that genes linked to the cell cycle and its regulation were
the main determinants of the host response in influenza
infection, whereas most immune and inflammatory genes
were downregulated. This downregulation points more
toward a state of immune suppression, particularly so for
many interleukin-receptor and signaling pathways. This
finding has potential diagnostic implications. For dec-
ades, inflammatory or immune response genes and pro-
teins have been investigated for their utility as diagnostic
markers for bacterial and viral infection. However, many
of these markers have failed because of the lack of speci-
ficity (for example, the marker is expressed in both viral
and bacterial infection). Our results suggest that cell
cycle-related genes may provide alternative candidates as
diagnostic markers.
The second surprising finding is that our study failed to

identify an immune response specific to bacterial pneumo-
nia. A small number of genes were dysregulated uniquely
in the bacterial infection group. However, analysis of these
genes revealed that no particular biological pathways or
networks were significantly overrepresented. The gene-
expression pattern of the bacterial group was most similar
to the SIRS cohort, as demonstrated by the large overlap
of genes between these two groups in the Venn diagrams
(Figure 1) and in the cluster analysis (Figure 7). Further
evidence supporting a lack of a unique immune response
to bacterial pneumonia was mounted when the SIRS and
bacterial pneumonia cohorts were compared directly, by
using the linear mixed model. No genes were significantly
differently expressed between these two phenotypes at 5%
FDR (data not shown). The lack of a bacteria-specific gene
signature contrasts sharply with the discovery of the 29-
gene virus-specific signature.
In this study, we focused on one specific cause of viral

pneumonia, pandemic H1N1 influenza A. From the results
we have presented, we are unable to conclude whether the
gene-expression signature we have identified is specific to
pandemic H1N1 influenza A viral infection, specific to all
subtypes of influenza, or a generic response to respiratory
viruses (for example, rhinovirus, respiratory syncytial
virus, influenza A and B). This was addressed to a small
extent: one of the independent test datasets we used con-
tained both influenza A- and B-infected individuals. In
this dataset, all of the influenza-infected samples exhibited
a similar gene-expression signature, as calculated by the
SVM integer (Figure 6B). Attempts have been made by
others to address this question by including multiple
respiratory virus types [24], and their results point toward
a relatively conserved nature of the host response to viral

infection. A signature that distinguishes a response to a
viral opposed to a bacterial infection would be useful in
the clinical management of pneumonia patients. Con-
founding variables such as effect of therapeutic interven-
tions, including medications, should be addressed in
future studies with a larger sample size; however, this is
outside the scope of this study.

Conclusions
We have identified a T-cell-dominant gene-expression
signature that is associated with the host response to
severe influenza pneumonia. This signature provides an
insight into the pathophysiology of influenza and may
serve as an alternative diagnostic approach to assist in
the management of severe community-acquired pneumo-
nia. The validity of such an approach warrants further
study in a large independent patient cohort.

Key messages
• The whole-blood gene-expression profile of H1N1
influenza A was distinctly different from bacterial pneu-
monia and systemic inflammatory response syndrome.
• Increased expression levels of genes linked to the cell

cycle and its regulation were the main determinant of the
host response in influenza infection, whereas most
immune and inflammatory genes were downregulated.
• Deconvolution of the whole-blood gene-expression

data revealed a strong representation of T-helper cell-
expressed genes upregulated in the whole-blood gene
signature for severe H1N1 influenza.

Additional material

Additional file 1: Supplementary results. This file contains three
supplementary tables and two supplementary figures, as cited in the
main text.
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