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Abstract 

Background Perhaps nowhere else in the healthcare system than in the intensive care unit environment are 
the challenges to create useful models with direct time‑critical clinical applications more relevant and the obstacles 
to achieving those goals more massive. Machine learning‑based artificial intelligence (AI) techniques to define states 
and predict future events are commonplace activities of modern life. However, their penetration into acute care 
medicine has been slow, stuttering and uneven. Major obstacles to widespread effective application of AI approaches 
to the real‑time care of the critically ill patient exist and need to be addressed.

Main body Clinical decision support systems (CDSSs) in acute and critical care environments support clinicians, 
not replace them at the bedside. As will be discussed in this review, the reasons are many and include the immaturity 
of AI‑based systems to have situational awareness, the fundamental bias in many large databases that do not reflect 
the target population of patient being treated making fairness an important issue to address and technical barri‑
ers to the timely access to valid data and its display in a fashion useful for clinical workflow. The inherent “black‑box” 
nature of many predictive algorithms and CDSS makes trustworthiness and acceptance by the medical community 
difficult. Logistically, collating and curating in real‑time multidimensional data streams of various sources needed 
to inform the algorithms and ultimately display relevant clinical decisions support format that adapt to individual 
patient responses and signatures represent the efferent limb of these systems and is often ignored during initial vali‑
dation efforts. Similarly, legal and commercial barriers to the access to many existing clinical databases limit studies 
to address fairness and generalizability of predictive models and management tools.

Conclusions AI‑based CDSS are evolving and are here to stay. It is our obligation to be good shepherds of their use 
and further development.

Keywords Complexity, Healthcare policy, Machine learning, Predictive analytics, Systems engineering

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Critical Care

*Correspondence:
Michael R. Pinsky
pinsky@pitt.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-024-04860-z&domain=pdf


Page 2 of 12Pinsky et al. Critical Care          (2024) 28:113 

Introduction
With the advent of increasingly available high-dimen-
sional health data combined with accelerating compu-
tational abilities to process and analyze them, there is 
an emerging opportunity to define health and disease 
states and their underlying physiologic and pathophysi-
ologic mechanisms with more clarity, precision, and effi-
ciency. Aspirationally, these advances might be applied 
to real-time diagnosis and patient management. Per-
haps nowhere else in the healthcare system than in the 
intensive care unit (ICU) environment are the challenges 
to create useful models with direct time-critical clinical 
applications more relevant and the obstacles to achieving 
those goals more massive. Machine learning (ML)-based 
artificial intelligence (AI) techniques to define states 
and predict future events are commonplace activities in 
almost all aspects of modern life. However, their penetra-
tion into acute care medicine has been slow, stuttering 
and uneven. There are many papers describing the vari-
ous types of ML approaches available [1–3]. But the reali-
zation of such approaches and tools to aid clinicians has 
been erratic.

Major obstacles to widespread effective application of 
AI approaches to real-time care of critically ill patients 
need to be addressed. Presently, clinical decision sup-
port systems (CDSS) cannot replace bedside clinicians 
in acute and critical care environments. The reasons are 
many and include the immaturity of CDSS to have situ-
ational awareness, the fundamental bias in many large 
databases that do not reflect target populations of patient 
being treated (making fairness an important issue), and 
technical barriers to timely access to valid data and its 
display in a fashion useful for clinical workflow. The 
inherent “black-box” nature of many predictive algo-
rithms and CDSS makes trustworthiness and acceptance 
by the medical community difficult. Logistically, collating 
and curating in real-time multidimensional data streams 
of various sources needed to inform the algorithms and 
ultimately display relevant clinical decisions support for-
mat that adapt to individual patient responses and signa-
tures represent the efferent limb of these systems and is 
often ignored during initial validation efforts. Similarly, 
legal and commercial barriers to the access to many exist-
ing clinical databases limit studies to address fairness and 
generalizability of predictive models and management 
tools. We will explore the barriers to effective use of AI in 
critical care medicine, and ways that either bypass them 
or address them to achieve effective CDSS.

Real‑world clinical data for both model‑building and CDSS
Large amounts of highly granular data—such as those 
from devices for monitoring and life support, laboratory 
and imaging studies, and clinical notes—are continuously 

being generated and stored in electronic health records 
(EHRs) from critically ill patients. The massive number 
of patients with available data for analysis dwarfs clinical 
trial sample sizes. Thus, there is both ample availability of 
data and a clear opportunity for data-driven CDSS. Com-
pared with clinical trials or prospectively, enrolled cohort 
studies, disadvantages of real-world data such as bias and 
non-random missingness, if addressed, are offset by obvi-
ous advantages including an unselected patient popula-
tion with larger sample size and the ability to update and 
focus analyses, all with the potential to maximize exter-
nal validity for a fraction of the cost. Currently, most crit-
ical care EHR data are only available for patient care and 
not for secondary use. Barriers include legal and ethical 
issues related to privacy protection as well as technical 
issues related to concept mapping across different-based 
Intensive Care Unit Data (EHR vendors where similar 
clinical concepts are represented differently, thus intro-
ducing semantic ambiguity [4]). But a very large obstacle 
is the lack of incentive to make intensive care data avail-
able for local, regional, or general use. However, the con-
cept that the healthcare system could learn from all data 
of all their patients is attractive and should foster data 
solidarity.

Responsible sharing of large ICU datasets at all levels 
implies finding the right balance between privacy protec-
tions and data usability. This requires careful combina-
tions of governance policies and technical measures for 
de-identification to comply with ethical and legal stand-
ards and privacy laws and regulations (e.g., Health Insur-
ance Portability and Accountability Act in the USA and 
General Data Protection Regulation in the EU). These 
challenges contributed to the fact that until recently, 
freely available ICU databases were sourced only from 
the USA. A partial list of publicly available US, Europe 
and China large intensive care databases is provided in 
Table  1. Most are described and accessible on the Phy-
sionet platform [5]. There are also numerous databases 
and data sharing initiatives that are less freely available. 
Access to these typically requires collaboration with 
institutes from which the data has been sourced (e.g., 
Critical Care Health Informatic Consortium, Dutch Data 
Warehouse and ICUdata.nl).

Operationally, the research question should determine 
the choice of dataset, as they differ substantially in cohort 
size, data granularity, treatment intensity, and outcomes. 
To foster model generalizability, at least two different 
datasets should be used. One barrier to this kind of exter-
nal validation would be removed if these free databases 
were available in common data models using standard 
vocabularies; the recent effort to map the MIMIC-IV 
dataset to the Observational Medical Outcomes Partner-
ship (OMOP) common data model is an important first 
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step in this effort [6]. The US-based Patient-Focused Col-
laborative Hospital Repository Uniting Standards (CHo-
RUS) for Equitable AI has initiated the generation of a 
harmonized, geographically diverse, large multi-domain 
dataset of ICU patients including EHR, text, images and 
waveform data (bridge2ai.org/chorus). This public-facing 
dataset should soon be available to complement existing 
databases with the added advantage of significant diver-
sity. Alternatively, the R-based Intensive Care Unit Data 
(RICU) and the Yet another ICU benchmark (YAIB) offer 
opportunities for combined analyses of critical care data-
sets. Another limitation of these datasets may be their 
limit of ICU-only data.

Despite the limited number of ICU datasets, the flurry 
of excellent modeling work afforded by these freely avail-
able intensive care datasets has exposed a severe trans-
lational gap, with implementation at the bedside and 
demonstration of improved patient outcomes using those 
models proving very challenging [7, 8].

Bias in database origins and model validation/governance
There is a fundamental flaw in building AI-CDSS using 
existing EHRs and evaluating the models using accuracy 
against real-world data given existing health disparities 
present in these databases. This is setup for encoding 
structural inequities in the algorithms, thereby legiti-
mizing their existence and perpetuating them in a data-
driven healthcare delivery system. Social patterning of 
the data generation process [9] and social determinants 
of care [10]. The social patterning of data generation 
pertains to how a patient is represented as her data dur-
ing healthcare encounters. In an ideal world, everyone 
is cared for “equitable fashion”. But existing EHRs suffer 
from bias because of how patients and their care are cap-
tured. These biases are reflected and may be reinforced 
by AI as the processes of model development and deploy-
ment. Furthermore, models built on EHR data skewed 

toward a primarily Caucasian class of patients may not 
model well African-American, Hispanic or oriental 
patients [11, 12]. EHR databases that are representative 
on the demographics of the patients for whom the AI-
CDSS is being directed are necessary.

To avert AI-legitimized and AI-enabled further mar-
ginalization of those already disproportionately burdened 
by disease and societal inequities, regulatory guard-
rails are needed. Such guardrails would be policies and/
or incentive structures developed through continuous 
open dialogue and engagement with communities that 
are disproportionately burdened, marginalized, or non-
represented. But unless the ML community prioritize 
the “who”—who are developing and deploying AI—and 
the “how”—is there transparency and accountability 
for responsible AI, then these CDSS efforts will be less 
effective.

Designing clinical decision support systems for situational 
awareness
Situational awareness (SA) is foundational to decisions 
and actions in sectors like aviation and medicine [13]. 
Robust SA is a prerequisite for sound decisions that rec-
ognize the relevant elements in an environment, under-
stand their meaning, and forecast their short-term 
progression. Lapses in SA are a primary cause of safety-
related incidents and accidents [13, 14]. SA continuously 
evolves, influenced by changing external circumstances 
and individual internal factors. Heavy workloads and 
fatigue with diminishing mental capacity can hinder a cli-
nician’s ability to achieve and maintain SA in critical care 
environments. In contrast, having extensive experience 
in a specific context can enhance SA, as familiarity guides 
what to focus on. Well-designed CDSS should improve 
SA.

Presently, AI-based CDSS will work alongside human 
decision makers as opposed to as autonomous support 

Table 1 Publicly available ICU databases

EHR, the entire electronic health records of a subject; ICU, the specific EHR of subjects within an ICU exposure; MIMIC, medical information mart for intensive care; ICU, 
intensive care unit

Databases Features Link

MIMIC III EHR, notes, high‑frequency physiology; ICU https:// physi onet. org/ conte nt/ mimic iii/1. 4/

MIMIC IV EHR, notes, high‑frequency physiology, electrocardiograms, 
radiologic images, EEG, Echocardiograms; Emergency depart‑
ment, Hospital, ICU

https:// physi onet. org/ conte nt/ mimic iv/2. 2/

eICU EHR; ICU https:// physi onet. org/ conte nt/ eicu‑ crd/2. 0/

AmsterdamUMCdb EHR; ICU https:// amste rdamm edica ldata scien ce. nl/ amste rdamu mcdb/

HiRID EHR, high‑frequency physiology; ICU; COVI 19 focused https:// physi onet. org/ conte nt/ hirid/1. 1.1/

SICdb EHR; high‑frequency physiology; ICU https:// physi onet. org/ conte nt/ sicdb/1. 0.6/

Zhejiang EHR, ICU https:// physi onet. org/ conte nt/ zheji ang‑ ehr‑ criti cal‑ care/1. 0/

Pediatric Intensive Care EHR, ICU https:// physi onet. org/ conte nt/ picdb/1. 1.0/

https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciv/2.2/
https://physionet.org/content/eicu-crd/2.0/
https://amsterdammedicaldatascience.nl/amsterdamumcdb/
https://physionet.org/content/hirid/1.1.1/
https://physionet.org/content/sicdb/1.0.6/
https://physionet.org/content/zhejiang-ehr-critical-care/1.0/
https://physionet.org/content/picdb/1.1.0/


Page 4 of 12Pinsky et al. Critical Care          (2024) 28:113 

systems. Such CDSS should transfer essential informa-
tion to decision makers as quickly as possible and with 
the lowest possible cognitive effort [15]. User-centered, 
SA-oriented design is needed for the successful imple-
mentation of AI-CDSS. In complex and dynamic envi-
ronments, AI-CDSS design should allow staff to clearly 
grasp information, reduce their workload, and strengthen 
their confidence in the diagnoses, importantly because 
these aspects promote staff acceptance and trust ulti-
mately determining whether AI-CDSS are implemented.

A wide gap exists between health AI done right and 
implementations in practice. Building and deploying AI 
predictive tools in health care is not easy. The data are 
messy and challenging, and creating models that can 
integrate, adapt, and analyze this type of data requires 
a deep understanding of the latest ML strategies and 
employ these strategies effectively. Presently, only few 
AI-based algorithms have shown evidence for improved 
clinician performance or patient outcomes in clinical 
studies [6, 16, 17]. Reasons proposed for this so-called 
AI chasm [18] are lack of necessary expertise needed for 
translating a tool into practice, lack of funding available 
for translation, underappreciation of clinical research as a 
translation mechanism, disregard for the potential value 
of the early stages of clinical evaluation and the analysis 
of human factors [19], and poor reporting and evalua-
tions [2, 8, 20].

State-of-the-art tools and best practices exist for per-
forming rigorous evaluations. For instance, the Devel-
opmental and Exploratory Clinical Investigations of 
DEcision support systems driven by Artificial Intelli-
gence (DECIDE-AI) [15] guideline provides an action-
able checklist of minimal reporting items facilitating the 
appraisal of CDS studies and their findings replicabil-
ity. Early-stage clinical evaluation of AI-CDSS should 
also place a strong emphasis on validation of perfor-
mance and safety, similar to pharmaceutical trials phase 
1 and 2, before efficacy evaluation at scale in phase 3. 
Small changes in the distribution of the underlying data 
between the algorithm training and clinical evaluation 
populations (i.e., dataset shift) can lead to substantial 
variation in clinical performance and expose patients to 
potential unexpected harm [21, 22]. Human factor (or 
ergonomics) evaluations are commonly conducted in 
safety–critical fields such as aviation, military, and energy 
sectors [23] evaluating the effect of a device or proce-
dure on their users’ physical and cognitive performance 
[24]. However, few clinical AI studies have reported on 
the evaluation of human factors [25]. The FDA recently 
released the “Artificial Intelligence and Machine Learn-
ing (AI/ML) Software as a Medical Device Action Plan,” 
which outlines their direction [24, 26] and the National 
Academy of Medicine has announced the AI Code of 

Conduct [27] but more work needs to be done. Clinical 
AI algorithms should be given the same rigorous scrutiny 
as drugs and medical devices undergoing clinical trials.

Bridging the implementation gap in acute care 
environments
Timely interventions require early and accurate iden-
tification of patients who may benefit from them. Two 
prominent examples relevant to critical care are models 
using readily available EHR data that can accurately pre-
dict clinical deterioration and sepsis hours before they 
occur [28–33]; these models exemplify real-time CDSS 
that alert clinicians and prompt evaluation, testing, and 
interventions [33]. Translation of these approaches in 
clinical intervention studies has improved outcomes [16, 
34, 35]. Despite these systems’ early promise, impor-
tant technical and social obstacles must be addressed to 
ensure their success. Indeed, the previously described 
“implementation gap” for medical AI extends to predict-
ing clinical deterioration and sepsis CDSS [7].

Most CDSS development begins with retrospective 
data; these data often have different quality and availabil-
ity than data in the production EHR, which can degrade 
model performance during implementation [36, 37]. Fur-
ther, outcome labels based on EHR data are generally 
proxies for real-world outcomes. Imprecise retrospective 
definitions unavailable in real time, such as billing codes, 
may complicate the validity of outcome labels [38, 39].

The clinical deterioration and sepsis CDSS models 
generated headlines for their high discrimination. While 
discrimination is important, more nuance is needed to 
understand whether a model is “good enough” to be used 
for individual patient decision-making. Even when dis-
crimination is high, the threshold chosen for alerts may 
result in suboptimal sensitivity or excessive false alarms 
[40]. Balancing sensitivity with false alarms and lead time 
for alerts remains a persistent challenge, and the optimal 
balance varies by use case [41]. Also, performance varia-
tion across settings, case mix and time must be measured 
and addressed [42, 43]. Evaluating model fairness across 
socioeconomic groups is another critical consideration 
before model implementation.

Information Technology infrastructure and expertise 
are also essential for implementing CDSS effectively. 
Vendors increasingly provide proprietary “turnkey” 
CDSS solutions for identifying clinical deterioration and 
sepsis [42–44]. While convenient, limitations include 
inconsistent transparency and performance, user expe-
rience constraints, and opportunity costs [45]. Alterna-
tive approaches may improve performance but generally 
require substantial resources and may be more vulner-
able to “break-fix” issues and other challenges [46].
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The social challenges to CDSS implementation are 
substantial. Successful implementation requires an 
understanding of intended users, their workflows and 
resources, and a vision of how these should change based 
on CDSS output [47, 48]. Implementation science meth-
ods offer guidance. Formative work might use determi-
nant frameworks and logic models to understand which 
behaviors a CDSS is meant to influence, thereby inform-
ing clinical workflow [49, 50].

Efforts to comprehend expected user needs may raise 
trust and facilitate adoption. Model explainability also 
improves trust and CDSS adoption. The high complex-
ity of many “black-box” ML models may preclude clini-
cians from valuing CDSS information when the output is 
incongruent with clinical intuition. Modern approaches 
to improving explainability include SHapley Additive 
exPlanations, a model-agnostic approach to visualizing 
predictor variable contributions to model output based 
on game theory. User interface design for real-time CDSS 
requires expertise in human factors, could be limited by 
vendor software capabilities and may require adherence 
to regulatory guidance by governmental agencies.

CDSS must be paired with the ability to measure what 
matters to patients and clinicians. Evaluation frameworks 
from implementation science may facilitate CDSS evalu-
ations, capturing elements of both efficacy and effec-
tiveness [51]. Study design choices for implementation 
evaluation will depend on available resources, local fac-
tors, and the clinical problem. Pragmatic randomized tri-
als and quasi-experimental designs offer advantages over 
pre-post designs or comparisons against historical con-
trols [34, 52].

A roadmap to effective adoption of AI‑based tools
The integration of AI into healthcare necessitates meticu-
lous planning, active stakeholder involvement, rigorous 
validation, and continuous monitoring, including the 
monitoring of adoption. Adhering to software develop-
ment principles and involving end-users enables CDSS 
to ensure successful adoption, ultimately resulting in 
improved patient care and enhanced operational effi-
ciency. A dynamic approach that involves regular assess-
ment and refinement of AI technology is essential to 
align it with evolving healthcare needs and technological 
advancements. Creating data cards, which are structured 
summaries of the essential facts about various aspects of 
the ML datasets needed by stakeholders across a project’s 
lifecycle for responsible CDSS development, is a very use-
ful in insightful initial step in this process. Figure 1 sum-
marizes the issues address in this paper as a roadmap to 
effective CDSS completion, and Table  2 itemizes obsta-
cles to efficient CDSS roll out and potential solutions.

It is vital that to have a designated owner to define the 
problem the AI technology is intended to solve and over-
see the design and deployment [53]. Involving a broader 
array of stakeholders before the pilot phase is equally 
crucial. This inclusive approach encourages early feed-
back and insights before full deployment, enhancing 
potential adoption and ensuring effective communica-
tion with the owner throughout the pilot deployment. 
Engaging a representative team of stakeholders deepens 
their understanding of the technology and its seamless 
integration into existing workflows. This involvement 
should encompass a diverse range of end-users, including 
medical professionals, clinicians, patients, caregivers and 
other stakeholders within the clinical workflow. Early and 
active engagement in design processes by stakeholders 
ensures alignment of technology with its intended objec-
tives, its smooth integration into established healthcare 
processes, and early prevention of safety risks and biases.

User Acceptance Testing forms a critical step in the 
software qualification process, where end-users rigor-
ously evaluate the technology’s functionality and, in the 
case of CDSS, agreement with the model output. It can 
inform false-positive and false-negative risks. This evalu-
ation ensures that technology aligns with their specific 
needs and expectations. The User Acceptance Testing 
phase offers invaluable insights into requirements, inte-
gration options and validation of AI-CDSS outputs based 
on those requirements and contributes significantly to 
interface design improvements. Human factor studies 
can be performed to demonstrate technology usability 
[54]. Usability factors and empirical measures can also be 
used in the testing phase [55]. By involving end-users in 
testing, the technology meeting its intended use is greatly 
facilitated and a sense of ownership is cultivated, empow-
ering end-users with a deeper understanding of how 
the technology integrates into their workflow, further 
enhancing its overall effectiveness. Before the AI-CDSS 
is introduced into the workflow, needs-adjusted training 
can facilitate AI-CDSS acceptance and instructions for its 
use [56].

Effectively measuring and monitoring AI technology 
adoption is pivotal for evaluating its real-world effective-
ness and pinpointing areas for enhancement. Utilizing 
quantitative metrics, such as tracking interface interac-
tions like button clicks, provides data on user engage-
ment, shedding light on usage patterns. Concurrently, 
surveys and qualitative interviews, focus groups, and 
direct observation offer deeper insights into user expe-
riences and perceptions. This dual approach enables 
healthcare organizations to refine the technology, prior-
itizing user satisfaction and feedback [57]. It also serves 
as an avenue for end-users to voice safety concerns and 
broader issues. Real-world deployment necessitates a 
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consistent feedback mechanism, since end-users might 
override recommended actions or decisions or disagree 
with AI-CDSS output. This feedback should be system-
atically shared with the development team or relevant 
organization, capturing information on agreement with 
the technology’s output and recommended decisions or 
actions. This process is akin to documenting protocol 
deviations in clinical trials and should encompass any 
safety concerns or other issues, such as bias. A compre-
hensive root cause analysis of disagreements, along with 
mitigation strategies, should be recorded at the point 
of care, enhancing the overall safety and efficacy of the 
technology.

The transition from the pilot phase to general deploy-
ment marks a pivotal stage in AI adoption. Successful 
pilot deployments act as a springboard for broader adop-
tion [58]. Human trust is an important factor, and further 
education on AI and transparency information can build 
this trust for clinicians and patients [59–61]. Identifying 

and leveraging technology champions within the health-
care system can profoundly influence the dissemination 
of the technology’s value. These advocates play a vital role 
in communication campaigns, training, and facilitating 
a seamless transition to widespread deployment, ensur-
ing a comprehensive understanding of the technology’s 
benefits.

Governance and regulatory considerations
The rapid advances in AI, and in particular the release 
of publicly available generative AI applications leverag-
ing advanced large language models, have greatly accel-
erated discussions considering the promises and pitfalls 
related to AI deployment in society and healthcare 
[7–17]. Heightened concerns about the development 
and deployment of AI have generated discussion about 
how to ensure that AI remains ‘aligned’ with human 
objectives and interests. As a result, a rapidly evolving 
set of regulations are being drafted by a wide variety of 
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regional, federal, and international governing bodies that 
are expected to become formalized over the next three 
years, such as the World Health Organization’s report on 
the Ethics and Governance of AI for Health and the Euro-
pean Union’s report on AI in Healthcare: Applications, 
Risks, and Ethical and Societal Impacts. In the USA, the 
White House’s Blueprint for an AI Bill of Rights: Mak-
ing Automated Systems Work for the American People; 
the National Institute of Standards and Technologies’ 
Artificial Intelligence Risk Management Framework; and 
the Food and Drug Administration’s guidance on Soft-
ware as a Medical Device and Clinical Decision Support 
Devices do the same. These documents highlight several 
governing principles for safe AI including that the tech-
nology should: do no harm; be safe; be accurate; be free 
of bias and discrimination; preserve privacy; be intelligi-
ble to end-users; be monitored on an ongoing basis; and 
address consent for use. These principles follow closely 
with effective, safe, and equitable healthcare delivery, 
yet AI poses novel challenges given its dependence on 
rapidly evolving and increasingly complex algorithmic 
underpinnings.

The AI workforce
The rapid growth of AI has accelerated discoveries 
across diverse scientific fields and affected every work 
environment [62–65] and is  reshaping the labor mar-
ket with unprecedented speed and scale, with 40% 
of  the global workforce expected to require AI, enhanc-
ing the need for significant AI upskilling or reskill-
ing [66]. The rapid adoption of AI into healthcare and 
clinical research is an opportunity to transform how we 
discover, diagnose, treat, and understand health and dis-
ease. The American Medical  Association  supports this 
vision of  human–machine collaboration by  rebranding 
the AI  acronym  as  “augmented intelligence” [67]. AI-
augmented clinical care requires an AI-literate medical 
workforce, but we presently lack sufficiently skilled work-
ers in medical domain-specific AI applications. Many 
biomedical and clinical science domain experts lack the 
foundational understanding of AI systems and meth-
odologies. There is currently not enough opportunity 
for rapid AI training in clinical medicine and research. 
AI tools and systems require increasingly less underlying 
mathematical or  technical knowledge to operate, align-
ing with the US Food and Drug Administration  (FDA) 
processes to authorized AI algorithms as  “software as a 
medical device” [68]. Evidenced by NIH Common Fund 
Programs (AIM Ahead and Bridge2AI), there is a univer-
sally acknowledged AI training gap and a clear need for 
accessible and scalable AI upskilling approaches to help 
raise the first  global  generation of AI-ready  healthcare 
providers.

The  future ICU workforce will require specialized AI 
critical care training that prioritizes a conceptual AI 
framework and high-level taxonomies over programming 
and mathematics. Clinicians must understand the indica-
tions and contraindications of relevant clinical AI models, 
including the ability to interpret and appraise published 
models and training datasheets associated with a given AI 
tool across various demographic populations [69, 70]. AI 
training programs in critical care must also be agile enough 
to adapt to rapid shifts in the AI landscape. Last, these 
programs should instill in trainees a fundamental working 
knowledge of bias, fairness, trust, explainability, data prov-
enance, and responsibility and accountability.

It is essential that the diversity of AI researchers mir-
rors the diverse populations they serve. There are sig-
nificant gaps in gender, race, and ethnicity [71, 72] Lack 
of diverse perspectives can negatively impact resulting 
products, as has plagued the AI field for years [73, 74]. 
The 2022 Artificial Intelligence Index Report states that 
80% of new computer science PhDs specializing in AI 
were male, and 57% were White, which has not changed 
significantly since 2010. There is thus a critical need for 
a nationwide academic-industrial collaborative train-
ing programs to fund, develop, and mentor diverse AI 
researchers to ensure AI fairness in biomedical research 
[75].

Conclusion
AI is here to stay. It will permeate the practice of criti-
cal care and has immense potential to support clinical 
decision making, alleviate clinical burden, educate cli-
nicians and patients, and save lives. Yet, although this 
complex, multifaceted, and rapidly advancing technology 
will reshape how healthcare is provided, it brings along 
deep ethical, fairness, and governance issues that must be 
addressed in a timely fashion.
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