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Abstract 

Background Near-infrared spectroscopy regional cerebral oxygen saturation  (rSO2) has gained interest as a raw 
parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high 
spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed 
to identify threshold values of  rSO2 and  rSO2-based CVR at which outcomes worsened following traumatic brain injury 
(TBI).

Methods A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated 
in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using  rSO2 and cerebral perfusion pressure) 
as well as COx_a (using  rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds 
along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logis-
tic regression, respectively.

Results In the cohort of 129 patients, there was no identifiable threshold for raw  rSO2 at which outcomes were found 
to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival 
and favorable outcomes, while percent time above − 0.05 was uniformly found to have the best discriminative value.

Conclusions In this multi-institutional cohort study, raw  rSO2was found to contain no significant prognostic infor-
mation. However,  rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold 
of 0.2 and exposure-based threshold of − 0.05, above which clinical outcomes markedly worsened. This study lays 
the groundwork to transition to less invasive means of continuously measuring CVR.
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Background
Contemporary critical care management of moderate-to-
severe traumatic brain injury (TBI) remains focused on 
guideline-based universal intracranial pressure (ICP) and 
cerebral perfusion pressure (CPP) targets [1, 2]. Despite 
various iterations, outcomes in these critically ill patients 
have failed to improve over the past decades [3]. As a 
result, attention is shifting toward a multimodal monitor-
ing approach in hopes of better understanding individual 
patient-level cerebral pathophysiologic states [4]. How-
ever, prior to driving management strategies, a thorough 
understanding of outcome associations of these various 
parameters must be developed.

One such modality of interest is near-infrared spec-
troscopy (NIRS). Near-infrared light has the ability to 
penetrate past the scalp and skull down to the cerebral 
parenchyma where it is scattered or absorbed by vari-
ous chromophores depending on the wavelength of light 
emitted [5, 6]. In spatially resolved NIRS devices, light 
scattered from oxyhemoglobin and deoxyhemoglobin 
within the cerebral microvasculature can be detected, 
isolated, and utilized to calculate parameters such as 
regional cerebral oxygen saturation  (rSO2).

While advantageous due to its noninvasive nature and 
relatively high spatial resolution, the association of NIRS 
parameters and outcomes following TBI remains unclear 
[7]. There is a substantive body of the literature support-
ing an association between NIRS parameters and cerebral 
blood flow (CBF) but threshold values at which outcomes 
worsen have not been identified [8].

On the other hand, dysfunctional cerebral autoregula-
tion/cerebrovascular reactivity (CVR) as a contributor to 
secondary injury following TBI has been greatly explored 
[9–12]. This has been largely facilitated by the develop-
ment of continuous measures of CVR, the most promi-
nent of which being the pressure reactivity index (PRx). 
PRx leverages ICP monitoring, typically indicated in the 
setting of moderate and severe TBI, as a surrogate for 
pulsatile cerebral blood volume (CBV) and arterial blood 
pressure (ABP) as a surrogate for driving pressure. Val-
ues closer to − 1 are indicative of a vasoactive state (i.e., 
intact CVR), and values closer to + 1 are indicative of a 
vasopassive state (i.e., disrupted CVR) [13].

A large body of evidence has validated the relationship 
between dysfunctional CVR, as measured by PRx, and 
poor functional outcomes following moderate-to-severe 
TBI [14–22]. Further, specific thresholds of PRx have 
been identified at which outcomes tend to worsen and 
mortality increases following TBI [22–24]. This has ulti-
mately led to studies trying to therapeutically maintain 
PRx below critical thresholds [25–29].

For all its strengths, PRx does have its inherent 
limitations. Foremost, its reliance on invasive ICP 

monitoring limits its application to settings where ICP 
monitoring is indicated. Thus, the use of PRx beyond 
the acute phase, or in milder TBIs, is limited. Addition-
ally, ICP can only act as a global surrogate for CBV and 
therefore the spatial resolution of PRx is minimal with 
essentially only whole brain assessment being feasible. 
As a result, alternative means of evaluating local CVR 
continuously at the bedside have become of interest.

While NIRS-based parameters have had mixed evi-
dence surrounding their utility in TBI care, leveraging 
these parameters to calculate metrics of CVR holds 
promise. In fact, NIRS-based indices of CVR are the 
only other continuous indices outside of ICP-based 
indices that have been shown to identify the lower 
limit of autoregulation in large animal models [30–32]. 
However, threshold values, at which clinical outcomes 
worsen, have not been identified.

This study explores the outcome associations of  rSO2, 
both as a raw NIRS parameter and as a surrogate for 
CBV in NIRS-based indices of CVR, with outcomes. It 
leverages the largest multicenter high-frequency physi-
ologic data set with NIRS concurrently recorded with 
ICP and ABP in moderate-to-severe TBI, from the 
CAnadian High-Resolution TBI (CAHR-TBI) Research 
Collaborative. The primary aim of this study was to 
identify the associations between these parameters and 
clinical outcomes following moderate-to-severe TBI. 
The secondary aim of this study was to identify thresh-
old values for these parameters at which clinical out-
comes worsen.

Methods
Study design
A retrospective multicenter cohort study was per-
formed leveraging prospectively collected high-resolu-
tion physiologic data and clinical outcome data from the 
CAHR-TBI Research Collaborative [33]. The CAHR-TBI 
Research Collaborative is a multi-institutional collabo-
ration pooling high-resolution physiologic data record-
ings from TBI patients admitted for moderate-to-severe 
TBI. The associated database contains physiologic data 
recordings dating back to 2011 and has prospective 
data collection ongoing. Local ethics approval for all 
aspects of data collection and anonymous data transfer 
between centers was obtained from the individual local 
research ethics boards: University of Manitoba Biomedi-
cal Research Ethics Board (BREB, H2017:181, H2017:188, 
H2020:118, B2023:001), University of Calgary Conjoint 
Health Research Ethics Board (CHREB, H20-03759), 
University of British Columbia Clinical Research Ethics 
Board (CREB, REB20-0482) and University of Maastricht 
Medical Ethics Committee (16-4-243).
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Patient population
The CAHR-TBI database includes high-resolution physi-
ologic data collected from moderate-to-severe TBI 
patients, defined as admission Glasgow Coma Scale 
(GCS) of less than 13, admitted to adult intensive care 
units (ICU) at participating institutions [33]. For the 
purposes of this retrospective study, data were col-
lected at four university-affiliated hospitals: Foothills 
Medical Centre (University of Calgary), Health Sciences 
Centre Winnipeg (University of Manitoba), Maastricht 
University Medical Center (University of Maastricht), 
and Vancouver General Hospital (University of British 
Columbia). Patient demographics (age and biologic sex), 
admission injury severity characteristics (GCS and pupil 
reactivity), and imaging characteristics (Marshall CT 
score) were all collected. Finally, 6-month outcome data 
were also collected using the Extended Glasgow Out-
come Scale (GOSE). Data regarding withdrawal of care 
were not available; however, as per local treatment guide-
line at each center, if care was decided to be withdrawn 
after the appropriate discussion with family/proxy, moni-
toring was discontinued. As such, physiologic data were 
only obtained during periods of active treatment. Given 
the exploratory and retrospective nature of this study, 
sample size calculations were not able to be performed 
and all datasets that met inclusion criteria were utilized 
for analysis.

Subjects from the CAHR-TBI database were included 
in this study if they had ICP, ABP, and  rSO2 monitor-
ing. Recording was initiated within 24 h of time from 
injury. All patients received standard care based on pub-
lished guidelines [1]. This included placement of ICP 
monitors, when indicated, and therapeutic treatment 
of ICP values greater than 20–22mmHg. A CPP tar-
get of greater than 60mmHg was also utilized. Notably, 
elevated CPP (> 70mmHg) was not routinely treated as 
per local practice. While NIRS-based  rSO2 was collected 
on all included patients, it was not routinely utilized to 
guide clinical care. Finally, individual patient care was not 
guided by continuous CVR metrics.

High‑resolution physiologic data collection
ICP was monitored utilizing an intraparenchymal 
probe (Codman ICP MicroSensor, Codman & Shurtleff 
Inc., Raynham, MA, USA; or NEUROVENT-P-TEMP, 
Raumedic Inc., Hambrecht, Germany; or Comino ICP 
monitor, Natus Medical Inc., Middleton, WI, USA) 
placed in the frontal lobe or with an external ventricu-
lar drain (EVD; Medtronic, Minneapolis, MN). No cor-
rection was made for monitor drift. ABP was obtained 
using a radial arterial line connected to a pressure 
transducer (Baxter Healthcare Corp. CardioVascular 

Group, Irvine, CA, USA) zeroed at the level of the 
tragus.  rSO2 was collected using NIRS regional cer-
ebral oximetry of both the left and right frontal lobes 
(INVOS 5100C or 7100, Covidien-Medtronic, Minne-
apolis, MN), where possible.

Data streams were recorded in digital high-frequency 
time series (≥ 100Hz for ABP and ICP, oversampled at 
1Hz for  rSO2, while signal generation was 0.2Hz) using 
analogue-to-digital signal converters (Data Translations, 
DT9804 or DT9826) when required. Digitized data were 
linked and stored in time series using Intensive Care 
Monitoring (ICM +) software (Cambridge Enterprise 
Ltd, Cambridge, UK).

Physiologic data cleaning and processing
All high-resolution physiologic data were cleared manu-
ally by qualified personnel utilizing ICM + software. 
This was done without knowledge of study objectives or 
patient demographic data to minimize bias. This included 
removal of periods when the EVD was open to drainage, 
identified by complete loss of ICP waveform.

Following artifact clearing, data were down-sampled 
utilizing a 10-s non-overlapping moving average filter to 
eliminate high-frequency fluctuations in these param-
eters and focus on vasogenic slow-wave fluctuations 
associated with cerebral vasomotion [17, 34]. Next, CVR 
indices were derived utilizing 300 s window Pearson cor-
relations between surrogates of CBV (ICP or  rSO2) and 
surrogates of driving pressure (ABP or CPP), continu-
ously updating every minute. Utilizing this method, PRx 
was derived (correlation between ICP and ABP) along 
with two variations of the cerebral oxygen index: COx 
(correlation between  rSO2 and CPP) and COx_a (correla-
tion between  rSO2 and ABP). ICP, ABP,  rSO2, PRx, COx, 
and COx_a were exported as minute-by-minute comma-
separated values (.csv) files for each patient. No interpola-
tion of missing data was performed as it was not required 
for subsequent analysis.

To provide the best quality data and simplify analysis, 
a single side/channel of  rSO2 was utilized for analysis 
and was selected to avoid interference from extravascu-
lar blood (scalp, epidural, subdural, or intraparenchymal 
hematomas/contusions) as based on radiographic imag-
ing. If a subject had evidence of bilateral extravascular 
blood, they were excluded from analysis. If no imaging 
data were available, the side with the longest duration 
of  rSO2 recording was selected to maximize data while 
maintaining a single NIRS channel. It was felt that aver-
aging channels would introduce too much variability in 
the data during periods when one channel would drop 
out, which is a frequent occurrence in the setting of 
trauma.
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Physiologic data analysis and statistical methods
R statistical software (Version 4.3.1, R Foundation for 
Statistical Computing, Vienna, Austria) was utilized for 
all data analysis leveraging the tidyverse and fmsb pack-
ages. OpenBLAS (Version 0.3.20, Institute of Software, 
Chinese Academy of Sciences, Beijing, China) was uti-
lized for the Basic Linear Algebra Subprograms (BLAS) 
and the Linear Algebra Package (LAPACK) to improve 
multithreaded computational performance.

Patients were categorized based on survival at 
6-months and based on favorable (GOSE 5–8) or unfa-
vorable (GOSE 1–4) clinical outcome at 6-months. 
Mean values of ICP,  rSO2, PRx, COx, and COx_a were 
computed for each patient over the course of their 
entire recording period in ICU. Physiologic and demo-
graphic data were summarized for the entire cohort 
based on median values and interquartile ranges (IQR), 
or number of subjects, where appropriate.

Demographic and mean physiologic data were com-
pared between alive/dead and favorable/unfavorable 
groupings utilizing Mann–Whitney U and chi-squared 
testing. Next, univariate logistic regression analysis was 
performed to determine the prognostic utility of aver-
ages of the physiologic parameters in isolation. This was 
followed by multivariable logistic regression analysis to 
characterize the prognostic value of the various physio-
logic parameters in and above a base model comprising 
of known clinical and radiographic prognostic indica-
tors from standard prognostic models (age, admission 
GCS, admission pupil exam, and Marshall CT score) 
[35]. For the univariate and multivariable regression 
analyses, area under the receiver operating character-
istic curve (AUC), Akaike information criterion (AIC), 
and Nagelkerke  R2 values were also determined to help 
compare the various models. Given the exploratory 
nature of this study, alpha was set to 0.05 without cor-
rection for multiple comparisons.

Following analyses previously reported in the multi-
modal monitoring TBI literature, derivation of thresh-
old values of  rSO2, COx, and COx_a, at which survival 
and favorable outcomes worsened, was attempted [23, 
24, 36]. Sequential 2 × 2 tables were generated based on 
patient outcome (either alive/dead or favorable/unfa-
vorable) and whether the average physiologic parame-
ter was above or below threshold. Sequential threshold 
values were utilized incrementing them by 0.05 for 
COx and COx_a and by 5% for  rSO2. For all three phys-
iologic parameters, Pearson’s chi-squared values were 
calculated for the 2 × 2 tables generated at each thresh-
old. For each parameter examined, the threshold value 
that produced the largest statistically significant chi-
squared value was deemed to have the best discrimina-
tive value.

While average values over a recording period may be 
useful prognostically, identification of thresholds for 
which percent time above/below is most discriminative 
may help better inform bedside management. To iden-
tify these exposure-based thresholds, the percentage 
time below  rSO2 threshold and above COx and COx_a 
threshold was calculated for each subject. Sequential 
threshold values were again utilized incrementing them 
by 0.05 for COx and COx_a and by 5% for  rSO2. A series 
of univariate logistic regressions were performed for 
both survival and favorable outcome (Survival ~ Per-
cent time over COx Threshold, Survival ~ Percent time 
over COx_a Threshold, Survival ~ Percent time below 
 rSO2 Threshold, Favorable Outcome ~ Percent time over 
COx Threshold, Favorable Outcome ~ Percent time over 
COx_a Threshold, Favorable Outcome ~ Percent time 
below  rSO2 Threshold) with the various threshold val-
ues. To determine the ideal threshold for each parameter, 
the area under the receiver operator characteristic curve 
(AUC) was calculated for each model and compared. The 
threshold values that produced the highest AUC were 
deemed to have the best discriminative value.

Results
Cohort demographics
In total, 129 subjects from the CAHR-TBI database 
were included in the study with admission to hospi-
tal between November 2016 and December 2022. This 
included 18 patients from Foothills Medical Centre (Uni-
versity of Calgary), 87 patients from Health Sciences 
Centre Winnipeg (University of Manitoba), 22 patients 
from Maastricht University Medical Center (University 
of Maastricht), and 2 patients from Vancouver Gen-
eral Hospital (University of British Columbia). In total 
751,060 min of unique physiologic recording was col-
lected with a median recording duration of 4578 min 
(IQR: 2346 to 8275 min) per subject. A 1-h sample of the 
10-s-by-10-s moving averaged physiologic data and min-
ute-by-minute derived CVR indices can be seen in Fig. 1. 
Radiographic data to identify extravascular blood for the 
purposes of selecting rSO2 channel side were available in 
87 subjects. The right  rSO2 channel was selected in 102 
subjects, while the left channel was selected in 27 sub-
jects. Demographic and physiologic data for the cohort 
are summarized in Table 1.

The results of the Mann–Whitney-U testing between 
alive/dead and favorable/unfavorable groups can be seen 
in Table  2. Age was found to be statistically higher in 
those who died and those who had an unfavorable out-
come. GCS on admission was found to be lower in those 
who had an unfavorable outcome at follow up. This trend 
was seen when examining survival; however, this did 
not reach statistical significance. All measures of CVR 
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(PRx, COx, Cox_a) were found to be statistically higher 
in those who died. While PRx and COx trended toward 
being higher in those with an unfavorable outcome than 
those with a favorable one, this did not reach statistical 
significance. Finally, of note,  rSO2 was no different across 
survival or clinical outcome groups.

Threshold value determination
There was no statistically significant discriminative 
threshold of average  rSO2 for survival or favorable out-
come. In Fig. 2A and B, + 0.2 was the threshold for aver-
age COx that produced the best statistically significant 
discriminative value for both favorable outcome and 
survival (χ2 = 6.11, p = 0.013; χ2 = 9.57, p = 0.0020, respec-
tively). Similarly, in Fig.  2C and D + 0.2 also produced 
the most discriminative threshold for average COx_a 
for both survival and favorable outcome (χ2 = 9.08, 
p = 0.0026; χ2 = 13.04, p < 0.001, respectively). Full results 
can be seen in Additional file 1.

There was no threshold value of  rSO2 where percentage 
time below was a statistically significant univariate logis-
tic regressor for either survival or favorable outcome. 
Regarding COx, a threshold value of − 0.05 produced the 
best performing univariate logistic model with percent 
time over threshold as a significant regressor for survival 
(p < 0.001, AUC = 0.70, 95% CI 0.60–0.79) and for favora-
ble outcome (p = 0.003, AUC = 0.65, 95% CI 0.55–0.79). 
Similarly, percent time over a threshold COx_a value 
of − 0.05 as a univariate regressor was found to pro-
duce the best performing model for survival (p < 0.001, 
AUC = 0.70, 95% CI 0.61–0.80) and favorable outcome 
(p = 0.002, AUC = 0.65, 95% CI 0.56–0.75). Full results 
can be seen in Additional file 2.

Univariate and multivariable logistic regression analysis
Through the univariate logistic regression analysis, 
average  rSO2 was again not found to be prognostic as 

Fig. 1 A sample of the 10-s-by-10-s recorded parameters arterial blood press (ABP), intracranial pressure (ICP), and left and right regional cerebral 
oxygen (L  rSO2 and R  rSO2) can be seen in the first four series. The minute-by-minute derived cerebrovascular reactivity indices (PRx—pressure 
reactivity index, L Cox—left cerebral oxygen index based on cerebral perfusion pressure, R COx—right cerebral oxygen index based on cerebral 
perfusion pressure, L COx_a—left cerebral oxygen index based on ABP, R COx_a—right cerebral oxygen index based on ABP) can be seen 
in the lower five series. Note that all five CVR indices trend well with each other
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a stand-alone parameter. Conversely, subject average 
values of ICP, PRx, COx, and COx_a were all found to 
be statistically significant predictors of survival and 

favorable outcome. Of note, average COx performed the 
best as a univariate regressor with the greatest degree of 
variance in outcome explained as demonstrated by the 
Nagelkerke  R2. Generally,  rSO2 based indices of CVR 
were prognostically equivalent to or better than PRx. The 
full results of the univariate logistic regression analysis 
can be found in Table 3.

Through the multivariable logistic regression analy-
sis, it was found the addition of  rSO2 to the baseline 
model failed to improve model performance and did not 
account for any additional variance in outcomes. While 
AUC values were similar for all models that utilized aver-
ages parameters over the recording period, Nagelkerke  R2 
values were markedly improved when the base model was 
augmented with average ICP, PRx, COx, or COx_a, indi-
cating an increased ability of the model to explain out-
come variance. Average ICP, COx, and COx_a remained 
independent predictors of survival when added to the 
base model, while, of these, only average ICP and average 
COx were independent predictors of favorable outcome. 
Interestingly, the multivariate models that performed the 
best were those that incorporated percent time over the 
previously determined COx and COx_a threshold of − 
0.05. Of note, average PRx was neither an independent 
predictor of survival nor favorable outcome when base 
model parameters were accounted for. The full results of 
the multivariable logistic regression analysis can be found 
in Table 4.

Discussion
Through this multi-institutional retrospective cohort 
study, the prognostic utility of various NIRS-based 
parameters has been assessed. This was done using the 
largest multicenter database, to our knowledge, with 
high-frequency  rSO2, ICP and ABP physiologic streams 
concurrently monitored. Given the relatively large cohort 
size and multi-institutional nature of the cohort, the 
findings of this study are likely widely generalizable to 
TBI populations. A key finding of this study is the prog-
nostic utility of  rSO2-based measures of CVR. These 
NIRS-based indices performed equally to the more com-
monly utilized ICP-based index PRx. This is in keeping 
with recent work indicating that PRx and COx/COx_a 
have a linear relationship with one another [37]. COx 
and COx_a, like PRx, have a range from − 1 to + 1 with 
higher values indicative of increased correlation of CBV 
and driving pressure and essentially disruption of CVR. 
Both COx and COx_a were found to have a grand mean 
threshold value of 0.2, above which outcomes worsened 
when the entire recording period was considered. This is 
consistent with previous large animal studies that found 
COx and COx_a values above the range of 0.3–0.5 to be 
associated with a complete loss of cerebral autoregulation 

Table 1 Patient demographics and cerebral physiology

COx Cerebral Oxygen Index Based on Cerebral Perfusion Pressure; COx_a 
Cerebral Oxygen Index Based on Arterial Blood Pressure; CPP Cerebral Perfusion 
Pressure; CT Computed Tomography; GCS Glasgow Coma Scale; GOSE Extended 
Glasgow Outcome Scale; ICP Intracranial Pressure; IQR Interquartile Range; 
PaCO2 Partial Pressure of Arterial Carbon Dioxide; PaO2 Partial Pressure of Arterial 
Oxygen; PRx Pressure Reactivity Index; and rSO2 Regional Cerebral Oxygen 
Saturation

*Data only available from 87 patients

Demographic parameter Median or 
number of 
patients
N = 129

Age (IQR) 41 (28–57)

Male, sex (%) 102 (79.1)

Admission GCS (IQR) 6 (4–8)

Admission pupils

 Bilaterally reactive (%) 91 (70.5)

 Unilaterally reactive (%) 20 (15.5)

 Bilaterally unreactive (%) 18 (14.0)

 N/A (%) 0 (0.0)

Marshall CT classification

 I (%) 2 (1.6)

 II (%) 31 (24.0)

 III (%) 30 (23.3)

 IV (%) 19 (14.7)

 V (%) 46 (35.7)

 VI (%) 0 (0.0)

 N/A, n (%) 1 (0.8)

Follow-up 6-month GOSE

 1 (%) 51 (39.5)

 2 (%) 1 (0.8)

 3 (%) 7 (5.4)

 4 (%) 2 (1.6)

 5 (%) 12 (9.3)

 6 (%) 14 (10.9)

 7 (%) 28 (21.7)

 8 (%) 11 (8.5)

 N/A, n (%) 3 (2.3)

Subject average ICP in mmHg (IQR) 10.0 (6.9–13.6)

Subject average CPP in mmHg (IQR) 73.5 (69.1–79.6)

Subject average  rSO2 in % (IQR) 69.7 (64.1–75.1)

Subject average PRx (IQR) 0.14 (0.02–0.25)

Subject average COx (IQR) 0.02 (-0.04–0.08)

Subject average COx_a (IQR) 0.04 (0.01–0.11)

Duration of ICP recording (days) 2.8 (1.1–4.9)

Duration of CPP recording (days) 2.7 (1.0–4.7)

Duration of  rSO2 recording (days) 2.5 (1.1–4.9)

Subject average  PaCO2 (mmHg)* 37 (34–40)

Subject average  PaO2 (mmHg)* 111 (89–140)
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[31, 38–40]. Given that this was the threshold found 
when values were averaged over the course of moni-
toring, a value of 0.2 may indicate a significant period 
of exposure to dysfunctional cerebral autoregulation 

resulting in poor clinical outcomes. Prior studies examin-
ing outcome associated thresholds with continuous ICP 
and transcranial Doppler (TCD)-based indices of CVR 
have also identified values in the range of 0.2 [22–24, 

Table 2 Comparison of demographic and physiologic parameters across alive/dead and favorable/unfavorable groups

Bolded p values indicate statistical significance (p < 0.05)

COx Cerebral Oxygen Index Based on Cerebral Perfusion Pressure; COx_a Cerebral Oxygen Index Based on Arterial Blood Pressure; CT Computed Tomography; GCS 
Glasgow Coma Scale; ICP Intracranial Pressure; IQR Interquartile Range; PRx Pressure Reactivity Index; and rSO2 Regional Cerebral Oxygen Saturation

Variable Favorable/unfavorable Alive/dead

Favorable median 
(IQR) or number (%)
N = 67

Unfavorable median 
(IQR) or number (%)
N = 62

p value Alive median (IQR) 
or number (%)
N = 78

Dead median (IQR) 
or number (%)
N = 51

p value

Age 38.5 (27.0–50.0) 49.0 (32.0–66.0) 0.0040 38.0 (25.3–38.3) 57.0 (35.3–66.8) < 0.0010
Male sex 51 (77.3) 50 (80.6) 0.64 61 (78.2) 41 (80.4) 0.77

Admission GCS 7.0 (5.0–8.0) 5.0 (3.0–8.0) 0.010 7.0 (5.0–8.0) 5.0 (3.0–8.5) 0.090

Number of reactive pupils 
on admission

2.0 (2.0–2.0) 2.0 (1.0–2.0) 0.060 2.0 (1.3–2.0) 2.0 (1.0–2.0) 0.23

Marshall CT Score 3.0 (3.0–5.0) 4.0 (2.0–5.0) 0.82 3 (2.3–5.0) 4.0 (2.3–5.0) 0.28

Subject average PRx 0.10 (0.01–0.21) 0.15 (0.03–0.29) 0.080 0.08 (0.01–0.21) 0.18 (0.04–0.29) 0.040
Subject average COx 0.01 (− 0.05 to 0.07) 0.03 (− 0.03 to 0.11) 0.080 0.01 (-0.05–0.05) 0.03 (− 0.02 to 0.14) 0.010
Subject average COx_a 0.04 (0.00–0.10) 0.05 (0.01–0.12) 0.18 0.03 (0.00–0.09) 0.07 (0.01–0.13) 0.030
Subject average  rSO2 70.2 (63.2–75.9) 69.5 (64.2–74.9) 0.94 69.5 (64.3–74.7) 70.3 (62.6–76.3) 0.98

Fig. 2 Plots of chi-square results for incremental thresholds of the cerebral perfusion pressure variant of the cerebral oxygen index (COx) 
and the arterial blood pressure variant of the cerebral oxygen index (COx_a). Panels A and C display the discriminative value of thresholds 
for favorable outcomes for average COx and COx_a, respectively. Panels B and D display the discriminative value of thresholds for survival 
for average COx and Cox_a, respectively. Red points indicate chi-square values that reached statistical significance (p < 0.05). Of note, while COx 
and COx_a theoretically extend from − 1 to + 1, in this dataset average values extended over a more limited range
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41–43]. These findings are also consistent with past stud-
ies in humans that have found that NIRS-based indices 
of CVR track strongly with ICP-based indices [15, 32, 37, 
44–46].

Even just exposure to periods of disrupted CVR may 
be associated with worse clinical outcomes [3]. When 
trying to identify an exposure-based threshold, percent 
time over − 0.05 was found to have the best discrimina-
tive value for both COx and COx_a. This may be a more 
clinically useful threshold when developing CVR guided 
management at the bedside. While an average COx or 
COx_a greater than 0.2 may represent gross CVR dys-
function, an increased proportion of time above values of 
− 0.05 may expose the brain to deleterious effect of CVR 

dysfunction. It should be noted that the present study 
represents the first such evidence of an outcome associa-
tion of these NIRS-based indices in TBI. Previous studies 
examining the outcome association of NIRS-based indi-
ces in TBI were likely underpowered [7].

Another notable finding of this study is that  rSO2, as 
a raw NIRS parameter, failed to demonstrate any prog-
nostic value in both univariate and multivariable analy-
sis. Further, there was no identifiable threshold value of 
 rSO2 at which outcomes following TBI worsened. This is 
somewhat surprising given the existing body of evidence 
indicating a relationship between  rSO2 and measures of 
CBF or CBV [8]. A key factor to take into consideration 
is that in these studies it was typical that relative changes 

Table 3 Univariate logistic regression

Bolded p values indicate statistical significance (p < 0.05)

AIC Akaike Information Criterion; AUC  Area Under the Receiver Operating Characteristic Curve; COx Cerebral Oxygen Index Based on Cerebral Perfusion Pressure; 
COx_a Cerebral Oxygen Index Based on Arterial Blood Pressure; CI Confidence Interval; ICP Intracranial Pressure; PRx Pressure Reactivity Index; and rSO2 Regional 
Cerebral Oxygen Saturation

Regressor Favorable vs unfavorable outcome Alive vs dead

AUC (95% CI) AIC Nagelkerke  R2 p value AUC (95% CI) AIC Nagelkerke  R2 p value

Subject average ICP 0.59 (0.49–0.69) 174.61 0.055 0.027 0.61 (051–0.72) 168.58 0.077 0.010
Subject average PRx 0.59 (0.49–0.69) 171.71 0.044 0.047 0.61 (0.51–0.71) 167.13 0.062 0.019
Subject average COx 0.59 (0.49–0.69) 172.85 0.060 0.021 0.63 (0.53–0.73) 163.57 0.117 0.0016
Subject average COx_a 0.57 (0.47–0.67) 177.00 0.044 0.046 0.61 (0.51–0.71) 168.32 0.089 0.0059
Subject average  rSO2 0.50 (0.40–0.60) 181.13 0.002 0.66 0.50 (0.39–0.60) 176.84 0.003 0.59

Table 4 Multivariable logistic regression

Bolded p values indicate statistical significance (p < 0.05)

Base model comprising of known clinical and radiographic prognostic indicators from standard prognostic models (age, admission GCS, admission pupil exam, and 
Marshall CT score) [35]

The base model included age, admission Glasgow Coma Scale, admission pupil reactivity, and Marshal computed tomography scale

AIC Akaike Information Criterion; AUC  Area Under the Receiver Operating Characteristic Curve; COx Cerebral Oxygen Index Based on Cerebral Perfusion Pressure; 
COx_a Cerebral Oxygen Index Based on Arterial Blood Pressure; CI Confidence Interval; ICP Intracranial Pressure; PRx Pressure Reactivity Index; and rSO2 Regional 
Cerebral Oxygen Saturation

Model Favorable vs unfavorable outcome Alive vs dead

AUC (95% CI) AIC Nagelkerke  R2 p value of 
additional 
parameter

AUC (95% CI) AIC Nagelkerke  R2 p value of 
additional 
parameter

Base model 0.73 (0.64–0.82) 164.50 0.195 N/A 0.74 (0.64–0.83) 155.64 0.231 N/A

Base model + ICP 0.75 (0.67–0.84) 158.23 0.258 0.024 0.78 (0.69–0.86) 144.99 0.332 0.003
Base Model + PRx 0.75 (0.66–0.83) 157.00 0.238 0.115 0.76 (0.67–0.85) 149.26 0.277 0.080

Base model + average COx 0.76 (0.67–0.84) 156.87 0.260 0.038 0.76 (068–0.85) 146.97 0.310 0.010
Base model + average 
COx_a

0.75 (0.67–0.84) 162.59 0.230 0.059 0.76 (0.67–0.85) 151.74 0.283 0.021

Base Model + percent Time 
COx > − 0.05

0.77 (0.69–0.85) 154.32 0.282 0.010 0.79 (0.70–0.87) 142.94 0.343 0.002

Base Model + percent Time 
COx_a > − 0.05

0.76 (0.68–0.85) 157.79 0.271 0.006 0.79 (0.70–0.87) 145.32 0.336  < 0.001

base model +  rSO2 0.73 (0.64–0.82) 166.45 0.195 0.830 0.74 (0.65–0.83) 157.64 0.231 0.935
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in CBV/CBF were associated with changes in  rSO2. In the 
present study, absolute values of  rSO2 were examined as a 
prognostic tool. This may explain why  rSO2-based indices 
had more prognostic utility than raw  rSO2 as these indices 
relay primary on changes in  rSO2 mathematically as they 
are derived utilizing a Pearson correlation coefficient.

A key takeaway from this study is that  rSO2 as a raw 
absolute parameter provides little, if any prognostic 
value in the ICU. This is consistent with recent studies 
that found high-resolution  rSO2 signals to have differ-
ing statistical properties to more established monitoring 
modalities in moderate-to-severe TBI including brain 
tissue oxygenation  (PbtO2), CPP, and ICP, as well as vari-
ous measures of CVR [47, 48]. It should be noted that in 
alternative settings, such as intraoperative monitoring, 
change in  rSO2 is viewed as a more reliable metric of cer-
ebral hypoxia and ischemic risk [49, 50]. However, in the 
setting of moderate and severe TBI, change in  rSO2 is a 
far less clear concept. Identifying an appropriate baseline 
in this setting is difficult given the confounders of already 
present cerebral injury and potentially concurrent multi-
system trauma.

Study limitations
Interpretation of the findings of this study should be 
taken with consideration of its limitations. First and fore-
most, this was a retrospective observational study where 
not all possible confounders were able to be accounted 
for. Measures of blood oxygen content such as systemic 
oxygen saturation  (SpO2) and arterial partial pressure of 
oxygen  (PaO2) along with other influential parameters 
such as end-tidal carbon dioxide  (ETCO2) and vasoac-
tive medication use were not available on a minute-by-
minute basis. These are factors that can also modify  rSO2 
signals, and therefore  rSO2-based indices of CVR [51]. 
While in the ICU setting these parameters are typically 
well controlled, the effect of these factors was not directly 
accounted for. Similarly, the degree of systemic injury 
or decisions surrounding withdrawal of care were not 
accounted for in each subject as this data was not avail-
able. This obviously neglects the effects these factors may 
have had on clinical outcome.

Secondly, only a single NIRS channel per patient was 
utilized for analysis. This was done to simplify the nature 
of the analysis but does mean that hemispheric differ-
ences in  rSO2, COx, or COx_a were not examined. Addi-
tionally, the selection of which channel to use was not 
always able to be guided by radiographic evidence of dis-
ruptive artifacts such as extravascular blood.

Finally, analysis was conducted over the entire record-
ing period of relevant physiologic parameters. This does 
mean that the temporal evolution of these parameters 
was not fully considered.

Future directions
Prior to abandoning  rSO2 as a parameter to guide man-
agement, further work will be required to examine if 
changes in  rSO2 are of greater prognostic value. Consid-
eration will need to be given to the various challenges 
in establishing an appropriate baseline. This will inform 
how best to utilize  rSO2 at the bedside to guide care as 
the results of this study indicate that raw values are likely 
of little value. Ultimately,  rSO2 informed management 
of TBI should be examined in a prospective randomized 
fashion to determine if this modality is a useful adjunct to 
more established monitoring methods.

Regarding the  rSO2-based indices of CVR, this study 
has indicated that there may be significant promise in 
their role as a prognostic tool. This will need to be further 
validated in large prospective studies. Patient-specific 
optimal CPP targets based on COx and COx_a warrant 
further exploration. Whether a threshold of 0.2 or − 0.05 
would produce better clinical outcomes when utilized to 
optimize CPP goals will need to be evaluated in a large 
multicenter prospective trial.

Finally, given the possible entirely noninvasive nature 
of COx_a, examination of the evolution of dysfunctional 
CVR following TBI should be possible into the chronic 
phase [52, 53]. A more thorough understanding of the 
trajectory of these parameters may help to not only guide 
management of this population in the acute phase but 
also through into the rehabilitation phase.

Conclusion
In this study, the prognostic utility of  rSO2 and 
 rSO2-based parameters of CVR was explored in the set-
ting of moderate-to-severe TBI. While absolute  rSO2 as 
a raw parameter was found to have negligible prognostic 
value, COx and COx_a were both found to contain prog-
nostic information. Beyond this, a grand mean threshold 
value of 0.2 was identified, for both COx and COx_a, 
above which outcomes markedly worsened. Additionally, 
− 0.05 for COx and COx_a was identified as a threshold 
value where the percentage of time above this threshold 
produced the best discriminative values. This work opens 
the door for further exploration of NIRS-based indices 
of CVR as a possible prognostic tool. Further work is 
needed to validate these findings and explore the possibly 
of COx/COx_a driven management of TBI in both the 
acute and chronic phases of recovery from TBI.
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