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Abstract 

Background Endotype classification may guide immunomodulatory management of patients with bacterial 
and viral sepsis. We aimed to identify immune endotypes and transitions associated with response to anakinra 
(human interleukin 1 receptor antagonist) in participants in the SAVE‑MORE trial.

Methods Adult patients hospitalized with radiological findings of PCR‑confirmed severe pneumonia caused 
by SARS‑CoV‑2 and plasma‑soluble urokinase plasminogen activator receptor levels of ≥ 6 ng/ml in the SAVE‑MORE 
trial (NCT04680949) were characterized at baseline and days 4 and 7 of treatment using a previously defined 33‑mes‑
senger RNA classifier to assign an immunological endotype in blood. Endpoints were changes in endotypes and pro‑
gression to severe respiratory failure (SRF) associated with anakinra treatment.

Results At baseline, 23.2% of 393 patients were designated as inflammopathic, 41.1% as adaptive, and 35.7% 
as coagulopathic. Only 23.9% were designated as the same endotype at days 4 and 7 compared to baseline, while all 
other patients transitioned between endotypes. Anakinra‑treated patients were more likely to remain in the adaptive 
endotype during 7‑day treatment (24.4% vs. 9.9%; p < 0.001). Anakinra also protected patients with coagulopathic 
endotype at day 7 against SRF compared to placebo (27.8% vs. 55.9%; p = 0.013).
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Background
Sepsis, defined as a dysregulated host immune response 
to infection resulting in life-threatening organ dys-
function, is one of the leading causes of death, affect-
ing as many as 50 million individuals annually with 
mortality as high as 40% [1, 2]. Coronavirus 2019 dis-
ease (COVID-19) that rapidly turned to a pandemic 
spreading around the globe and leading to millions of 
confirmed cases and deaths worldwide is character-
ized by complex immune dysregulation; severe pneu-
monia is often associated with acute dysfunction of 
additional organs such as the kidney or the circulation 
[3–5]. Consequently, the Sepsis-3 definition may apply 
for COVID-19. Indeed, analysis applying the Sepsis-3 
criteria showed that almost 80% of COVID-19 patients 
hospitalized in the intensive care unit (ICU) met the 
criteria, and they can be considered as sufferers from 
viral sepsis [6, 7].

Sepsis is a heterogeneous syndrome, and many inves-
tigators have introduced the need of subgroup classifi-
cation into endotypes reflecting the mechanism of the 
disease [8]. Patient stratification subsequently allows the 
tailoring of precision immunotherapy. These endotypes 
share common immunobiological pathways and may 
guide targeted immunomodulatory treatment [9].

Recently, a 33-gene-based classifier for patient stratifi-
cation in sepsis has been developed. The classifier assigns 
a patient with sepsis to one of three distinct endotypes: 
inflammopathic, adaptive and coagulopathic [10]. The 
combination of the expression of ARG1, LCN2, LTF, 
OLFM4, HLA-DMB defines the inflammopathic endo-
type; of YKT6, PDE4B, TWISTNB, BTN2A2, ZBTB33, 
PSMB9, CAMK4, TMEM19, SLC12A7, TP53BP1, PLE-
KHO1, SLC25A22, FRS2, GADD45A, CD24, S100A12, 
STX1A the adaptive endotype; and of KCNMB4, CRISP2, 
HTRA1, PPL, RHBDF2, ZCCHC4, YKT6, DDX6, SENP5, 
RAPGEF1, DTX2, RELB the coagulopathic endotype. 
These endotypes were validated in an independent cohort 
of patients with COVID-19 pneumonia at the beginning 
of the pandemic. Validation showed that that patients of 
the inflammopathic endotype had the highest circulating 
concentrations of C-reactive protein (CRP) and those of 
the coagulopathic endotype the highest circulating con-
centrations of D-dimers. Patients of the adaptive endo-
type had the best 28-day outcome [11].

SAVE-MORE is a pivotal randomized clinical trial 
where patients with COVID-19 pneumonia at early acti-
vation of the interleukin (IL)-1 cascade recognized by 
increased blood concentrations of the biomarker suPAR 
(soluble urokinase plasminogen activator receptor) were 
randomized to treatment with placebo or anakinra. 
Results showed that anakinra treatment was accompa-
nied by an improved outcome compared to placebo by 
day 28, as expressed by the WHO Clinical Progression 
Scale (WHO-CPS) [12]. Based on this evidence, anakinra 
was approved for  the treatment of COVID-19 pneumo-
nia by both the European Medicines Agency and by the 
Food and Drug Administration of the US [13, 14]. We 
applied the 33-messenger RNA (mRNA) endotype classi-
fier to SAVE-MORE participants to identify which sepsis 
immune endotypes are the best candidates for anakinra 
treatment.

Methods
Patients
This study is a post hoc analysis of the SAVE-MORE 
double-blind randomized clinical trial (NCT04680949), 
approved by the National Ethics Committee of Greece 
(approval 161/20) and by the Ethics Committee of the 
National Institute for Infectious Diseases Lazzaro Spal-
lanzani, IRCCS, in Rome (1 February 2021) [11]. In 
SAVE-MORE, trial participants were 1:2 randomly allo-
cated to once daily subcutaneous treatment with either 
placebo or anakinra 100  mg for 10  days in addition to 
Standard-of-Care (SoC). Dexamethasone, remdesivir and 
anticoagulation were allowed in the SoC at the discretion 
of treating physicians; other anti-cytokine drugs like toci-
lizumab were not allowed. Study participants were adults 
of either sex, hospitalized with radiological findings of 
pneumonia by SARS-CoV-2, and plasma suPAR 6 ng/ml 
or more. Infection was confirmed by PCR testing. Main 
exclusion criteria were: noninvasive or invasive mechani-
cal ventilation, stage IV malignancy, any do-not-resusci-
tate decision, ratio of partial oxygen pressure to fraction 
of inspired oxygen less than 150, severe hepatic failure, 
any primary immunodeficiency, neutrophils less than 
1500/mm3, oral or intravenous corticosteroids more than 
0.4 mg/kg/day of equivalent prednisone the last 15 days, 
any anti-cytokine biologic treatment the last month, 
hemodialysis, and pregnancy or lactation. All patients 

Conclusion We identify an association between endotypes defined using blood transcriptome and anakinra therapy 
for COVID‑19 pneumonia, with anakinra‑treated patients shifting toward endotypes associated with a better out‑
come, mainly the adaptive endotype.

Trial registration ClinicalTrials.gov, NCT04680949, December 23, 2020.
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or their legal representatives provided written informed 
consent before enrollment. The current analysis included 
only participants with severe disease at baseline accord-
ing to the WHO definition (i.e., respiratory rate > 30 
breaths/min, severe respiratory distress, or  SpO2 < 90% 
on room air) providing at least a baseline blood sample 
[15].

RNA extraction and NanoString profiling
RNA extraction was performed from 2-ml aliquot of the 
available sample with RNeasy Micro Plus kit (Qiagen, 
Cat. No. / ID: 74134) according to manufacturer proto-
col. Elution volume was 14 µl, with average total yield of 
720  ng. Each NanoString expression profiling reaction 
consisted of 150  ng of RNA per sample hybridized for 
16  h at 65  °C per manufacturer’s instructions. We then 
followed the nCounter SPRINT standard protocol to 
generate mRNA counts.

We normalized mRNA counts using geometric mean 
of counts of four housekeeping genes (CDIPT, KPNA6, 
RREB1 and YWHAB) to account for differences in 
hybridization, purification, binding efficiency, and 
other experimental variables as described in  nCounter® 
Expression Data Analysis Guide (https:// nanos tring. com/ 
wp- conte nt/ uploa ds/ Gene_ Expre ssion_ Data_ Analy sis_ 
Guide lines. pdf ). To assess sample quality, we used geo-
metric mean of housekeeping gene counts (pre-normali-
zation) and limit-of-detection (LOD).

Laboratory procedures and endotypes
Whole blood was drawn in PAXgene RNA tubes (Bec-
ton Dickinson) at three timepoints (before start of the 
study drug and days 4 and 7 of treatment), along with 
other standard laboratory parameters. PAXgene blood 
RNA samples were shipped to Inflammatix, where RNA 
was extracted and the 33 mRNAs were quantitated using 
NanoString nCounter (NanoString, Seattle, WA). Endo-
types were grouped as previously described [9]. Briefly, 
each of the 33 mRNAs is assigned to one of the three 
groups, and the difference of geometric means of gene 
expression for each grouping is calculated. The previously 
defined multiclass logistic regression model was applied 
to these three input gene expression scores, which yields 
a probability of endotype assignment (for each subject, 
the total probability (p[Inflammopathic] + p[Adaptive] + 
p[Coagulopathic] sums to 1). Each sample is assigned an 
endotype according to the highest probability.

Endpoint
This analysis is a secondary endpoint of the study pro-
tocol which received advice from the Emergency Task 
Force for COVID-19 of the European Medicines Agency 
(document EMA/659928/2020). The analysis identified 

endotype transitions which may be associated with anak-
inra treatment and the association of endotypes or endo-
type transitions from baseline to day 7 of treatment with 
the progression into severe respiratory failure (SRF) and/
or death at day 28. SRF was defined as the need for non-
invasive or invasive mechanical ventilation at day 28.

Statistical analysis
Categorical data were presented as frequencies and con-
fidence intervals (CI); continuous variables with nor-
mal distribution as mean with standard deviation (SD). 
Fisher’s exact/Chi-square test was used for comparison 
of categorical data, whereas Student’s t test/ANOVA or 
nonparametric Mann–Whitney/Kruskal–Wallis tests 
were used for the comparison of continuous data, as 
appropriate. Odds ratio (OR) with CI was calculated for 
categorical data. Cox regression analysis was used to 
detect the impact of endotype transitions on clinical out-
comes at day 28; hazard ratio (HR) and 95% CI were cal-
culated. In order to investigate if stabilization of patients 
to specific endotypes is not influenced by confounding 
factors like age, comorbidities, suPAR levels, COVID-
19 severity, treatment with dexamethasone, body mass 
index and country, univariate and multivariate logistic 
regression analyses were done. In the model stabiliza-
tion to a specific endotype, over the three timepoints of 
sampling was the dependent variable, and all confound-
ing factors and anakinra treatment were the independ-
ent variables. Quantitative variables entered the model 
as binary variables pre-defined by the Emergency Task 
Force of the European Medicines Agency for COVID-19 
as follows [16]: (a) age ≥ 65  years or less than 65  years; 
(b) Charlon’s comorbidity index (CCI) ≥ 2 or less than 2; 
(c) suPAR ≥ 9 ng/ml or less than 9 ng/ml; and d) Sequen-
tial Organ Failure Assessment (SOFA) score ≥ 3 or less 
than 3. COVID-19 severity, treatment with dexametha-
sone, body mass index and country were the randomi-
zation strata of the SAVE-MORE trial. Any two-sided p 
value < 0.05 was considered statistically significant. Sta-
tistical analysis was performed using the software SPSS 
version 29.0.

Results
Patients
In the original trial, 594 patients were enrolled: 189 were 
treated with SoC and placebo, and 405 were treated with 
SoC and anakinra. In the present analysis, 393 patients 
with severe pneumonia providing at least a baseline 
blood sample, were included, of which 130 patients were 
allocated to treatment with SoC and placebo and 263 
patients to treatment with SoC and anakinra. Character-
istics of anakinra- and placebo-treated patients did not 
differ at baseline (Table 1). Blood samples were available 

https://nanostring.com/wp-content/uploads/Gene_Expression_Data_Analysis_Guidelines.pdf
https://nanostring.com/wp-content/uploads/Gene_Expression_Data_Analysis_Guidelines.pdf
https://nanostring.com/wp-content/uploads/Gene_Expression_Data_Analysis_Guidelines.pdf
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from all patients at baseline, 327 patients at day 4 of treat-
ment; and 326 patients at day 7 of treatment. For 282 
patients, blood samples were available at all three time-
points. At baseline, 101 patients (25.7%) were classified 
in the inflammopathic endotype, 148 patients (37.7%) in 
the adaptive endotype, and 144 patients (36.6%) in the 
coagulopathic endotype. Patients with inflammopathic 
or coagulopathic endotype had higher sequential organ 
failure assessment (SOFA) score, more respiratory dis-
tress (as attested by a lower respiratory ratio) and higher 
inflammatory burden (as attested by the higher white 
blood cell count and the higher levels of CRP and of fer-
ritin) when compared to patients with the adaptive endo-
type (Table 2).

Endotype assignment at baseline, days 4 and 7
At baseline (i.e., prior to starting the treatment), the 
distribution of the three endotypes was similar in 
anakinra-treated and placebo-treated patients. Among 
anakinra-treated patients, 23.2% were classified as 
inflammopathic, 41.1% as adaptive and 35.7% as coagu-
lopathic and among placebo-treated patients 30.8%, 
30.8% and 38.5%, respectively (p: 0.102, Fig.  1). At day 
4 of treatment, 29.9% of anakinra-treated patients were 
inflammopathic, 40.7% adaptive and 29.4% coagulopathic 
compared to 44.3%, 30.2% and 25.5% of placebo-treated 
patients, respectively (p: 0.032). At day 7 of treatment, 
31.8% of anakinra-treated patients were inflammopathic, 
43.6% adaptive and 24.5% coagulopathic compared to 

34.0%, 34.0% and 32.1% of placebo-treated patients, 
respectively (p: 0.196, Fig. 1).

Endotype transitions are common and Adaptive endotype 
is protective
Most patients changed endotypes over the three different 
timepoints; only 170 patients maintained the same endo-
type at day 4 as the baseline, whereas 94 patients main-
tained at day 7 the same endotype as both the baseline 
and day 4. For all other patients, an endotype transition 
was observed under treatment (Fig.  2). Adaptive endo-
type was associated with better outcomes irrespective of 
treatment arm. Among 371 patients with available serial 
data of at least two consecutive timepoints, 148 (37.7%) 
patients were never assigned an adaptive endotype, 96 
(24.4%) were assigned an adaptive endotype at one time-
point, 83 (21.1%) at two timepoints and 44 (11.2%) at all 
three timepoints. Incidence of SRF by day 28 was 34.5% 
for patients who were never assigned the adaptive endo-
type, 38.5% for those assigned adaptive endotype at one 
timepoint, 12.0% for those assigned adaptive endotype 
at two timepoints and 11.4% for those assigned adap-
tive endotype at all three timepoints (p < 0.001); 28-day 
mortality was 9.5%, 6.3%, 1.2% and 0% in these groups, 
respectively (p: 0.020). Results were significant even 
after adjusting for remdesivir treatment and anticoagu-
lation  (HRadj, 0.63; 95% CI 0.49–0.81; p < 0.0001 for inci-
dence of SRF and  HRadj, 0.31; 95% CI 0.13–0.74; p: 0.008 
for 28-day mortality, respectively). Patients who were 

Table 1 Characteristics of patients by group of treatment

P-values of statistical significance are marked in bold

SD standard deviation, SoC standard-of-care, SOFA sequential organ failure assessment, SRF severe respiratory failure

Placebo + SoC (N = 130) Anakinra + SoC (Ν = 263) p

Age, years, mean (SD) 62 (12) 62 (12) 0.626

Male sex, n (%) 78 (60.0) 154 (58.6) 0.828

Body mass index, mean (SD) 30.2 (5.9) 29.7 (5.6) 0.321

Charlson’s comorbidity index, mean (SD) 2.2 (1.5) 2.2 (1.6) 0.543

SOFA score, mean (SD) 2.5 (1.1) 2.6 (1.0) 0.958

Comorbidities, n (%)

 Type 2 diabetes mellitus 20 (15.4) 40 (15.2) 1.000

 Chronic heart failure 2 (1.5) 8 (3.0) 0.507

 Chronic renal disease 1 (0.8) 4 (1.5) 1.000

 Chronic obstructive pulmonary disease 5 (3.8) 12 (4.6) 1.000

Co-administered medications, n (%)

 Remdesivir 92 (70.8) 192 (73.0) 0.634

 Dexamethasone 128 (98.5) 259 (98.5) 1.000

 Prophylactic low molecular weight heparin 78 (97.5) 175 (98.9) 0.591

Outcomes, n (%)

 Incidence of SRF at day 28 47 (36.2) 68 (25.9) 0.045
 28‑Day mortality 12 (9.3) 10 (3.8) 0.035
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assigned adaptive endotype at 2 or more timepoints were 
less likely to develop SRF (11.8% vs. 36.1%, p < 0.0001) 
or die within 28 days (0.8% vs. 8.2%, p: 0.002) than those 
who were assigned adaptive endotype at 1 or no time-
point. Incidence of SRF was again significant even after 
adjusting for remdesivir treatment and anticoagulation 
 (HRadj, 0.29; 95% CI 0.16–0.54; p < 0.0001). The protec-
tive effect of the adaptive endotype was consistent and 

replicated in both placebo and anakinra arms of treat-
ment (p: 0.454 by Tarone’s test; Fig. 2). The incidence of 
SRF and/or death was similar in both arms of treatment 
among patients with baseline adaptive endotype (Fig. 2).

Anakinra treatment stabilizes the Adaptive endotype
Anakinra treatment prevented shifting of patients 
from the adaptive to other endotypes under treatment 

Table 2 Characteristics of all patients  by endotype assignment at day 1

P-values of statistical significance are marked in bold

SD standard deviation, SOFA sequential organ failure assessment, Q quartile, uPAR urokinase plasminogen activator receptor

*p < 0.05 for comparison between adaptive and inflammopathic endotype
# p < 0.05 for comparison between adaptive and coagulopathic endotype
$ p < 0.05 for comparison between inflammopathic and coagulopathic endotype

All patients
(N = 393)

Inflammopathic
(N = 101)

Adaptive
(Ν = 148)

Coagulopathic
(Ν = 144)

p

Age, years, mean (SD) 62 (12) 62 (12) 61 (12) 63 (12) 0.477

Male sex, n (%) 232 (59.0) 62 (61.4) 83 (56.1) 87 (60.4) 0.645

Body mass index, mean 
(SD)

29.9 (5.6) 29.2 (5.5) 30.7 (5.6) 29.6 (5.8) 0.058

Charlson’s comorbidity 
index, mean (SD)

2.2 (1.5) 2.3 (1.6) 2.1 (1.4) 2.3 (1.7) 0.671

SOFA score, mean (SD) 2.6 (1.1) 2.7 (1.2) 2.3 (1.0)*,# 2.7 (1.0) 0.006
Comorbidities, n (%)

 Type 2 diabetes mel‑
litus

60 (15.3) 12 (11.9) 25 (16.9) 23 (16.0) 0.535

 Chronic heart failure 10 (2.5) 3 (3.0) 4 (2.7) 3 (2.1) 0.899

 Chronic renal disease 5 (1.3) 0 (0.0) 1 (0.7) 4 (2.8) 0.115

 Chronic obstructive 
pulmonary disease

17 (4.3) 5 (5.0) 9 (6.1) 3 (2.1) 0.229

Co-administered medications, n (%)

Assigned to Anak‑
inra intervention

263 (66.9) 61 (60.4) 108 (73.0) 94 (65.3) 0.102

 Remdesivir 284 (72.3) 67 (66.3) 119 (80.4) 98 (68.1) 0.019
 Dexamethasone 387 (98.5) 100 (99.0) 146 (98.6) 141 (97.9) 0.771

 Low molecular weight 
heparin

253 (64.4) 59 (58.4) 104 (70.3) 90 (62.5) 0.262

Venous thromboembolic 
event, n (%)

8 (2.0) 3 (2.9) 2 (1.3) 3 (2.1) 0.673

Arterial thrombosis, n (%) 1 (0.3) 0 (0.0) 0 (0.0) 1 (0.7) 0.420

Laboratory values, median (Q1–Q3)

 White blood cells, /
mm3

6380 (4570–8715) 7370 (5470–9640) 5390 (4190–7180)*,# 6880 (4670–9465)  < 0.0001

 Lymphocytes, /mm3 770 (560–1050) 650 (500–900) 980 (710–1185)*,# 670 (520–900)  < 0.0001
 Platelets, /mm3 208,000 (164,000–274500) 210,000 (175,000–273000) 186,000 (154,500–

243000)*,#
226,000 (171,000–298500) 0.007

 C‑reactive protein, mg/l 52.0 (25.6–102.4) 72.8 (25.4–114.6) 40.4 (21.4–76.8)*,# 63.0 (31.3–112.3) 0.003
 Interleukin‑6, pg/ml 16.3 (6.4–40.9) 15.1 (5.8–33.1) 19.6 (7.2–45.7) 16.0 (6.1–43.8) 0.061

 Ferritin, ng/ml 635.9 (351.0–1146.4) 860.5 (446.0–1520.1) 533.6 (294.9–934.5)* 674.0 (310.6–1099.6)$  < 0.0001
 D‑dimers, mg/l 0.53 (0.32–0.95) 0.59 (0.33–1.16) 0.46 (0.28–0.77)*,# 0.55 (0.37–0.92) 0.040
 Serum soluble uPAR, 
ng/ml

7.9 (7.0–8.9) 7.7 (6.8–9.5) 8.0 (7.0–8.5) 8.0 (6.8–8.9) 0.835

  PaO2: FiO2 216 (172–275) 203 (154–250) 246 (199–293)*,# 203 (159–274)  < 0.0001
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compared to placebo (Fig.  1). More precisely, 24.4% of 
anakinra-treated patients were stabilized in the adap-
tive endotype compared to only 9.9% of placebo-treated 
patients (p < 0.0001). This effect was further demon-
strated by multivariate logistic regression analysis taking 
into consideration all possible confounders. Univariate 
and multivariate analyses showed that anakinra treat-
ment was the only independent variable favoring stabili-
zation to the adaptive endotype, whereas disease severity 
as expressed by the level of suPAR and SOFA score was 
against stability into the adaptive endotype. Patients sta-
bilized by day 7 to the adaptive endotype were at less risk 
for progression into SRF and/or death at day 28 (Fig. 3).

Coagulopathic endotype at day 7 as predictor of final 
outcome
Hyper-coagulation is a predominant feature of COVID-
19 pneumonia associated with mortality [5]. Since the 
coagulopathic endotype is characterizing patients at a 
hyper-coagulable state [12], we analyzed the association 
between progression to SRF and incidence of the coag-
ulopathic endotype at day 7. In detail, 34 patients allo-
cated to the SoC and placebo arm had the coagulopathic 
endotype by day 7 (of these 34 patients, six patients were 
inflammopathic at baseline, 12 patients were adaptive 
at baseline and 16 patients were coagulopathic at base-
line); 19 patients (55.9%) progressed to SRF. In total, 54 
patients allocated to the SoC and anakinra arm had the 
coagulopathic endotype by day 7 (of these patients, 11 
patients were inflammopathic at baseline, 14 patients 

were adaptive at baseline and 29 patients were coagulo-
pathic at baseline); 15 patients (27.8%) progressed to SRF 
(p: 0.013 compared to the SoC and placebo arm), show-
ing that anakinra treatment prevented the deleterious 
effect of the coagulopathic endotype associated with the 
development of SRF (Fig.  4). Anakinra-treated patients 
with coagulopathic endotype at day 7 had lower serum 
CRP, IL-6 and suPAR concentrations, and higher abso-
lute lymphocyte count compared to placebo-treated 
patients with coagulopathic endotype at day 7 (Table 3). 
Incidence of SRF and/or death was similar between anak-
inra-treated patients and placebo-treated patients classi-
fied with adaptive or inflammopathic endotypes at day 7 
(Fig. 4).

Discussion
In this post hoc analysis of the SAVE-MORE clinical 
trial that randomized patients with COVID-19 pneu-
monia into SoC/placebo versus SoC/anakinra treatment 
arms, we show that hospitalized patients with severe 
COVID-19 pneumonia according to WHO definition 
are classified into three endotypes, namely inflammo-
pathic, adaptive and coagulopathic. More than half of 
these patients change their immune endotype during 
disease course. Anakinra treatment stabilizes patients in 
the adaptive endotype, which is associated with a bet-
ter outcome. Anakinra treatment also has a protective 
effect against the deleterious effect of the coagulopathic 
endotype.

Fig. 1 Alluvial plots of distribution of endotype transitions of patients of the SAVE‑MORE trial treated with standard‑of‑care (SoC) and anakinra (left 
panel) and standard‑of‑care (SoC) and placebo (right panel), from baseline endotype to the endotype of days 4 and 7 of treatment
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Among the patients with COVID-19 admitted in the 
ICU, 80% fulfill the criteria of viral sepsis [7]. Sepsis 
in general is a heterogeneous clinical condition, and 
it is rational to hypothesize that similar heterogene-
ity applies to viral sepsis [17]. We previously described 
inflammopathic, adaptive and coagulopathic endo-
types in patients with COVID-19 pneumonia [11], and 
the adaptive endotype was accompanied by the most 
favorable outcome. To the best of our knowledge, no 
other endotype classification has been validated in viral 
sepsis so far. Several other efforts have taken place to 
classify patients with bacterial sepsis into endotypes. 
Davenport et  al. performed a genome-wide transcrip-
tion profiling of patients admitted in the ICU due to 
community-acquired pneumonia and ended up with 
two sepsis response signature (SRS) groups, namely 
SRS1 and SRS2 [18]. Working toward the molecu-
lar diagnosis and risk stratification (MARS) of sepsis, 

Scicluna et al. defined four distinct endotypes, namely 
MARS 1–4 [19].

Endotypes may have a prognostic value; in various 
cohorts specific endotypes, such as the inflammopathic, 
the SRS1 and the MARS1 are associated with higher 
mortality [9]. The adaptive endotype as defined here was 
previously shown to be protective in COVID-19 patients, 
being associated with the lowest mortality [11]. Interest-
ingly, remaining in the adaptive endotype throughout 
the first 7 days of follow-up is associated with decreased 
risk for SRF. In fact, almost all studies of endotypes so far 
describe the classification only at baseline and predict 
outcome only with the baseline time snapshot. We here 
show for the first time that more than 50% of patients 
evolve over time and are assigned to different endotypes. 
Moreover, endotype after 7  days of treatment is more 
predictive than baseline for unfavorable final outcomes. 
Thus, following longitudinally the endotype assignment 

Fig. 2 Endotype transitions between days of follow‑up. Upper panel: Alluvial plot of distribution of endotype transitions of patients 
of the SAVE‑MORE trial from baseline endotype to the endotype at days 4 and 7 of treatment. Lower panel left: Proportion of patients that develop 
severe respiratory failure (SRF) and/or die by day 28, as function of number of timepoints they spent in the adaptive endotype. Lower panel right: 
Kaplan–Meier curves for the time of progression to severe respiratory failure and/or death by day 28 of patients with adaptive endotype at baseline 
and treated with Standard‑of‑Care (SoC) and placebo or SoC and anakinra. Abbreviations: CI, confidence interval; HR, hazard ratio
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of patients may be more important to detect alterations 
and possible effects of the applied treatment on the host 
immune response and clinical outcomes.

Anakinra treatment prevented shifting of the patients 
from the adaptive endotype. Adaptive endotype is char-
acterized by activation of pathways of adaptive immune 
responses such as type I interferon antiviral response 

Fig. 3 Stabilization over the first 7 days of follow‑up to the adaptive endotype. The upper panel shows the univariate and multivariate logistic 
regression analyses of variables associated with the stabilization of patients in the adaptive endotype between baseline day 1 and follow‑up 
days 4 and 7. The lower panel shows the Kaplan–Meier curves for the time of progression to severe respiratory failure and/or death by day 28 
between patients of the entire SAVE‑MORE cohort remaining by day 7 in the adaptive endotype and those not stabilized by day 7 in adaptive 
endotype. Abbreviations: BMI, body mass index; CCI, Charlson’s comorbidity index; CI, confidence interval; HR, hazard ratio; n, number; OR, odds 
ratio; SOFA, sequential organ failure assessment score; SRF, severe respiratory failure; suPAR, soluble urokinase plasminogen activator receptor
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and this likely contributed to contain the virus but also 
deleterious immune responses, independently from 
antiviral treatment and anticoagulation [10]. Endotype 
classification was developed to detect suitable candi-
dates for different immunomodulatory approaches, 
and with our results, this hypothesis seems to be valid; 
treating patients with anakinra and switching off the 
hyperinflammation reprograms the host’s immune 
function to a more adaptive setting protecting the host 
from SRF, multiorgan failure and death.

One striking finding of the current analysis is the 
importance of the coagulopathic endotype. Previous 
studies have shown that the coagulopathic endotype is 
associated with a deleterious outcome [10]. In this study, 
anakinra treatment protected these patients from devel-
oping SRF; the precise molecular pathway through which 
anakinra treatment exerts this beneficial effect needs to 
be studied further.

In a retrospective analysis of a subgroup of patients 
participating in the ORANGES trial who received 

Fig. 4 Association between the prevailing endotype at day 7 and 28‑day outcome. Kaplan–Meier curves for the time of progression to severe 
respiratory failure and/or death by day 28 between patients treated with Standard‑of‑Care (SoC) and placebo versus Standard‑of‑Care 
(SoC) and anakinra and classified at day 7 into the coagulopathic endotype (upper panel left); the adaptive endotype (upper panel right); 
and the inflammopathic endotype (lower panel). Abbreviations: CI, confidence interval; HR, hazard ratio
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hydrocortisone, ascorbic acid, and thiamine in sepsis, a 
first association was found between endotype (inflammo-
pathic and coagulopathic), hydrocortisone and outcome 
[20]. In our cohort, almost all patients received dexa-
methasone for COVID-19 as SoC and such an associa-
tion with corticosteroids was not feasible to detect.

It needs to be outscored that this if the first time where 
the association of an immunointervention with the over-
time modulation of the host endotype is presented in a 
randomized clinical trial. The main strengths of the study 
are the randomized design, the use of validated endo-
types and the serial measurements demonstrating endo-
type evolution over time. The main limitations are: (a) 
the lack of samples from all patients at all time points; (b) 
the enrollment of patients with increased suPAR; and (c) 
the existing, so far, difficulty of application of endotypes 
in daily routine practice. The investigation of the endo-
types in immunocompromised and transplanted patients 
should become a future priority.

Conclusions
To the best of our knowledge, this is the first study to 
assess the clinical utility of endotype classification at dif-
ferent timepoints in COVID-19 with clinical benefit of 
immunomodulatory treatment with anakinra. Patient 
stratification and a personalized approach of immuno-
therapy is likely to become a cornerstone for the future of 
sepsis management, and more research is needed toward 
this direction.
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