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Abstract 

Background Despite evidence associating inflammatory biomarkers with worse outcomes in hospitalized adults 
with COVID‑19, trials of immunomodulatory therapies have met with mixed results, likely due in part to biological 
heterogeneity of participants. Latent class analysis (LCA) of clinical and protein biomarker data has identified two 
subtypes of non‑COVID acute respiratory distress syndrome (ARDS) with different clinical outcomes and treatment 
responses. We studied biological heterogeneity and clinical outcomes in a multi‑institutional platform randomized 
controlled trial of adults with severe COVID‑19 hypoxemic respiratory failure (I‑SPY COVID).

Methods Clinical and plasma protein biomarker data were analyzed from 400 trial participants enrolled from Sep‑
tember 2020 until October 2021 with severe COVID‑19 requiring ≥ 6 L/min supplemental oxygen. Seventeen hypoth‑
esis‑directed protein biomarkers were measured at enrollment using multiplex Luminex panels or single analyte 
enzyme linked immunoassay methods (ELISA). Biomarkers and clinical variables were used to test for latent subtypes 
and longitudinal biomarker changes by subtype were explored. A validated parsimonious model using interleukin‑8, 
bicarbonate, and protein C was used for comparison with non‑COVID hyper‑ and hypo‑inflammatory ARDS subtypes.

Results Average participant age was 60 ± 14 years; 67% were male, and 28‑day mortality was 25%. At trial enrollment, 
85% of participants required high flow oxygen or non‑invasive ventilation, and 97% were receiving dexamethasone. 
Several biomarkers of inflammation (IL‑6, IL‑8, IL‑10, sTNFR‑1, TREM‑1), epithelial injury (sRAGE), and endothelial injury 
(Ang‑1, thrombomodulin) were associated with 28‑ and 60‑day mortality. Two latent subtypes were identified. Sub‑
type 2 (27% of participants) was characterized by persistent derangements in biomarkers of inflammation, endothelial 
and epithelial injury, and disordered coagulation and had twice the mortality rate compared with Subtype 1. Only 
one person was classified as hyper‑inflammatory using the previously validated non‑COVID ARDS model.

Conclusions We discovered evidence of two novel biological subtypes of severe COVID‑19 with significantly differ‑
ent clinical outcomes. These subtypes differed from previously established hyper‑ and hypo‑inflammatory non‑COVID 
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subtypes of ARDS. Biological heterogeneity may explain inconsistent findings from trials of hospitalized patients 
with COVID‑19 and guide treatment approaches.

Keywords COVID‑19, Hypoxemic respiratory failure, Latent class analysis, Phenotyping, Biological heterogeneity, 
Protein biomarkers

Background
Coronavirus disease 2019 (COVID-19) is clinically hetero-
geneous, ranging from asymptomatic disease to protracted 
critical illness with a high fatality rate [1]. Variability in the 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), the environment, and the host all contribute to 
this heterogeneity. Host-related clinical factors associated 
with poor outcomes include male sex, obesity, older age, 
and the presence of comorbidities such as diabetes mellitus 
and hypertension [2, 3]. Studies on the host immunologic 
response to SARS-CoV-2 have found associations between 
circulating levels of interleukin- (IL-) 6, tumor necrosis fac-
tor (TNF), interferon- (IFN-) α, IL-10 and other cytokines 
with outcomes in those with moderate to severe disease [4]. 
Trials of immunomodulators in this population, however, 
have met with mixed results, likely in part due to complex 
host–pathogen interactions. For instance, the RECOVERY 
trial found that dexamethasone led to a reduction in 28-day 
mortality in severe COVID-19 [5]. However, four other 
trials reached different conclusions [6–9]. Similar find-
ings have been reported with IL-6 inhibitors [10–15] and 
the antiviral therapy, remdesivir [16–19]. These disparate 
findings suggest that trial participants may be biologically 
heterogeneous, leading to studies that are underpowered to 
detect meaningful treatment effects.

Latent class analysis (LCA) of clinical and protein 
biomarker data has identified two subtypes of non-
COVID acute respiratory distress syndrome (ARDS), 
termed “hyper-inflammatory” and “hypo-inflammatory,” 
the former characterized by elevated plasma levels of 
inflammatory biomarkers such as IL-6 and soluble TNF 
receptor 1 (sTNFR-1) and lower levels of bicarbonate 
and protein C [20]. These subtypes have significantly 
different mortality in secondary analyses of numerous 
trials and observational studies [20–24] Moreover, the 
subtypes demonstrate different responses to therapies 
such as PEEP, fluid strategy, and simvastatin in second-
ary analyses of randomized trials [20, 21, 24]. A similar 
approach to subtyping patients with COVID-19 ARDS 
early in the pandemic revealed significant overlap with 
non-COVID ARDS subtypes, but with the exception of 
IL-6, data on biomarkers of lung injury and inflamma-
tion were unavailable [25]. Additionally, corticosteroids 
were associated with reduced 90-day mortality in one 
subtype, offering a plausible explanation for the mixed 
results from corticosteroid trials in severe COVID-19 

[26]. An observational study similarly found two distinct 
subtypes of COVID-19 ARDS using clinical data from a 
single center, early in the pandemic. No data on biomark-
ers of lung injury or inflammation were collected [27]. A 
recent retrospective cohort study by Verhoef et  al. used 
latent profile analysis of clinical and extensive protein 
biomarker data from a cohort of patients with COVID-19 
who presented to acute care facilities and identified two 
novel subtypes with heterogeneous treatment response 
to corticosteroids [28]. Due to the observational nature of 
the recruited cohort, the study was limited by heteroge-
neous practices around steroid or other immunomodula-
tor drug administration, timing of SARS-CoV-2 infection, 
and a mix of patients from the outpatient and inpatient 
settings, limiting the conclusions that can be drawn with 
regards to the biology of patients with severe COVID-19.

In this study, the primary objective was to apply LCA 
using clinical and protein biomarker data to test for evi-
dence of latent subtypes in the I-SPY COVID randomized 
controlled trial of investigational agents for the treatment 
of severe COVID-19. [29]

Methods
Study design
Data were obtained from the I-SPY COVID Trial, a 
multi-institutional phase 2 platform randomized con-
trolled open-label trial to evaluate pharmacotherapies 
for severe COVID-19 (NCT04488081). The trial proto-
col and results for the first seven agents, none of which 
met predefined criteria for benefit, have been reported 
[29, 30]. In brief, newly hospitalized adults with SARS-
CoV-2 requiring ≥ 6 L/min supplemental oxygen were 
randomized to either a control arm receiving backbone 
therapy (Remdesivir and dexamethasone) or an investiga-
tional arm receiving backbone therapy plus a study drug.

Assay procedures
Plasma was collected on days 1 (baseline, prior to admin-
istration of any active study drug), 3, and 7 following trial 
enrollment. Seventeen candidate protein biomarkers of 
inflammation, disordered coagulation, endothelial, and 
epithelial lung injury were selected a priori based on evi-
dence from non-COVID ARDS and early evidence from 
COVID-19 studies. Biomarkers were measured using 
customized and validated multiplex Luminex panels or in 
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duplicate using single analyte enzyme linked immunoas-
say methods (ELISA) (Additional file 1: methods). SARS-
CoV-2 nucleocapsid antigen levels were measured using 
a single-molecule immune bead assay (Quanterix, Bill-
erica, MA, USA).

Statistical analysis
The primary outcome for these analyses was 28-day mor-
tality. Secondary outcomes included 60-day mortality, 
time to death, and time to recovery. The association of 
each biomarker with mortality was tested using unad-
justed logistic regression models and models adjusting 
for age, BMI, and level of respiratory support required 
at study enrollment. P-values were adjusted for multiple 
comparisons using False Discovery Rate (FDR) cutoff 
of 0.05. The Fine-Gray model for cumulative incidence 
function was used to estimate a subdistribution hazard 
ratio (SHR) for the association of each biomarker with 
time to death and time to recovery, as recovery and death 
were competing events in the trial (Additional file  1: 
methods).

A set of clinical and protein biomarker data were 
selected a priori to serve as subtype defining variables 
for LCA. Modeling was performed agnostic of clinical 
outcomes using standard methods [31]. A validated par-
simonious model using IL-8, bicarbonate, and protein 
C was used for comparison with established hyper- and 
hypo-inflammatory LCA subtypes of non-COVID ARDS 
[32]. Using longitudinal biomarker measurements in the 
control arm, we fit linear mixed effects models to deter-
mine whether subtype assignment was associated with 
differences in biomarker trajectory over time.

Analyses were conducted in R 4.2.2, STATA 17.0, and 
MPlus 8.8.

Results
Cohort characteristics
Of 868 patients randomized in the I-SPY COVID trial 
from September 18th, 2020, until October 6th, 2021, 597 
had plasma collected at baseline (Additional file 2: Figure 
S1). The first 400 were included in the analyses to pro-
vide adequate power for LCA analyses [33, 34]. Average 
age was 60 ± 14 years; 67% were male, and 28-day mortal-
ity was 25% (Table 1). At trial enrollment, 26% required 
positive pressure ventilation, and 97% were receiving 
dexamethasone. Patients excluded from these analyses 
had similar characteristics to those included (Additional 
file 2: Table S1).

Baseline protein biomarkers and associations 
with outcomes
Baseline concentrations of several biomarkers were sig-
nificantly associated with 28-day mortality. Specifically, 

increased concentrations of SARS-CoV-2 antigen, bio-
markers of inflammation (IL-6, IL-8, IL-10, triggering 
receptor expressed on myeloid cells [TREM-1], sTNFR-1, 
interferon-gamma induced protein 10 [IP-10]), alveolar 
epithelial injury (soluble receptor for advanced glycation 
end products [sRAGE], surfactant protein D [SP-D]) and 
endothelial injury (thrombomodulin, intercellular adhe-
sion molecule 1 [ICAM-1], and the ratio of Ang-2 to 
Ang-1 [Ang-2/Ang-1]) were significantly associated with 
increased odds of 28-day mortality (Additional file 2: Fig-
ure S2, Table S2).

After adjusting for confounders, SARS-CoV-2 anti-
gen, IL-6, IL-8, IL-10, TREM-1, sTNFR-1, sRAGE, and 
thrombomodulin were still associated with 28-day mor-
tality. In unadjusted analyses, all the biomarkers associ-
ated with 28-day mortality were also associated with 
increased odds of 60-day mortality (Additional file 2: Fig-
ure S2, Table S3). Additionally, increased concentrations 
of Ang-1, vascular endothelial growth factor (VEGF), and 
protein C were associated with a reduced odds of 60-day 
mortality. After adjusting for confounders, IL-6, IL-8, 
IL-10, IP-10, TREM-1, sTNFR-1, thrombomodulin, Ang-
1, sRAGE, and SARS-CoV-2 antigen were still associated 
with 60-day mortality.

Given the impact of tocilizumab on inflammatory bio-
markers, we performed a sensitivity analysis by removing 
the 68 patients (17%) who received tocilizumab during 
their hospitalization. We found similar associations of 
biomarkers with 28- and 60-day mortality, with some 
exceptions (Additional file  2: Figure S3). In the unad-
justed analyses, ICAM-1 was no longer associated with 
28-day mortality, and Ang-2 became significantly associ-
ated with 28- and 60-day mortality. In the adjusted analy-
ses, IL-10 was no longer associated with 28-day mortality.

The same biomarkers associated with 60-day mortal-
ity were also associated with time to death and recovery 
(Additional file 2: Tables S4, S5). Additionally, protein C 
and Ang-1 were significantly associated with recovery. 
Results of extended Cox model analyses are provided in 
Additional file 2: Tables S6 and S7.

Latent class analysis
We fit four models with increasing number of classes and 
found that a two-class model was the best fit for the data 
based on fit characteristics (Table  2). Using this model, 
292 participants (73%) were categorized as Subtype 1 
and 108 (27%) as Subtype 2. The average probability for 
most likely latent class membership was 0.96 for Subtype 
1 and 0.93 for Subtype 2. Subtype 2 patients were older 
and more likely to be on invasive mechanical ventilation 
(IMV) at trial enrollment (33% vs 9%) (Table  3). Time 
from symptom onset, not included in the LCA, was simi-
lar between the two groups (Table 3). Subtype 2 patients 



Page 4 of 15Alipanah‑Lechner et al. Critical Care           (2024) 28:56 

Table 1 Characteristics of the study population and outcomes by assigned I‑SPY COVID trial arm

Control arm
(N = 142)

Investigational arm
(N = 258)

P value*

Age (mean ± SD) 59.3 ± 14.4 60.1 ± 14.0 0.6

Male sex 93 (66%) 174 (67%) 0.78

BMI (median (IQR)) 32 (28 to 39) 32 (28 to 36) 0.26

Race 0.38

Black or African American 38 (27%) 51 (20%)

White or Caucasian 73 (51%) 141 (55%)

Other 8 (6%) 21 (8%)

Unknown 23 (16%) 45 (17%)

Ethnicity 0.17

Hispanic/Latinx 42 (30%) 69 (27%)

Not Hispanic/Latinx 98 (69%) 176 (68%)

Unknown 2 (1%) 13 (5%)

Comorbidities

Cerebrovascular disease 8 (6%) 13 (5%) 0.98

Congestive heart failure 11 (8%) 14 (5%) 0.48

Diabetes 56 (39%) 87 (34%) 0.3

Chronic kidney disease 21 (15%) 25 (10%) 0.22

End stage kidney disease 1 (0.7%) 1 (0.4%) 1

Dialysis 0 (0%) 2 (0.8%) 0.76

Hypertension 84 (59%) 144 (56%) 0.59

Liver disease—mild 2 (1%) 3 (1%) 1

Liver disease—moderate to severe 1 (0.7%) 1 (0.4%) 1

Myocardial infarction 5 (3%) 6 (2%) 0.7

Peripheral vascular disease 7 (5%) 6 (2%) 0.27

Chronic Lung disease 30 (21%) 49 (19%) 0.7

Chronic rheumatologic disease 8 (6%) 13 (5%) 0.98

COVID-19 severity—enrollment† 0.58

WHO 5 117 (82%) 221 (86%)

WHO 6 12 (9%) 15 (6%)

WHO 7 13 (9%) 22 (9%)

Respiratory support, enrollment 0.84

≤ 15 LPM oxygen 14 (10%) 28 (11%)

> 15 LPM oxygen 90 (63%) 165 (64%)

Noninvasive mechanical ventilation 13 (9%) 27 (11%)

Invasive Mechanical ventilation 25 (18%) 37 (14%)

Dexamethasone ≥ 6  mg‡ 136 (96%) 251 (97%) 0.60

Other COVID-19 treatments

Tocilizumab 23 (16%) 45 (17%) 0.86

Convalescent plasma 6 (4%) 14 (5%) 0.77

Inhaled nitric oxide 12 (8%) 24 (9%) 0.92

Epoprostenol 29 (20%) 49 (19%) 0.83

Neuromuscular blockade 41 (29%) 83 (32%) 0.57

Baricitinib 2 (1%) 6 (2%) 0.72

Investigational agents

Razuprotafib – 10 (4%)

Apremilast – 31 (12%)

Aviptadil – 20 (8%)

Celecoxib/Famotidine – 18 (7%)

Cenicriviroc – 43 (17%)
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were more likely to have comorbidities such as cerebro-
vascular disease, congestive heart failure, hypertension, 
diabetes, and chronic kidney disease (Additional file  2: 
Table S8).

Compared to Subtype 1, Subtype 2 had higher base-
line levels of sTNFR-1, creatinine, B-type natriuretic 
peptide (BNP), Ang-2, sRAGE, partial thromboplastin 
time (PTT), neutrophil to lymphocyte ratio, IP-10, IL-18, 
MMP-8, IL-8, white blood cell count (WBC), IL-6, C 
reactive protein (CRP), total bilirubin, SP-D, and SARS-
CoV-2 antigen (Fig.  1, Table  3). ICAM-1, plasminogen 
activator inhibitor 1 (PAI-1), and BMI were not signifi-
cantly different between the two groups. Subtype 2 had 
lower levels of protein C, bicarbonate, hematocrit, plate-
lets, Ang-1, and VEGF. Creatinine, sTNFR-1, protein 
C, and bicarbonate were the most subtype separating 
variables. Given the strong association between SARS-
CoV-2 antigen levels and outcomes in the literature, we 
conducted a sensitivity analysis by repeating LCA after 

excluding this analyte. There were no notable differences 
between the models though five patients switched sub-
types (three became Subtype 1, and two became Subtype 
2), suggesting that antigen levels were not a significant 
driver of subtype differences (Additional file 2: Figure S4).

Subtype 2 designated participants had higher 28-day 
(41% vs 20%, p < 0.0001) and 60-day mortality (45% 
vs 24%, p < 0.0001) compared to Subtype 1 (Fig.  2, 
Table  3). Subtype 2 was associated with a subdistribu-
tion hazard ratio (SHR) of death of 2.5 (95%CI 1.7 to 3.5, 
p-value < 0.001) compared to Subtype 1 (Fig.  2, Addi-
tional file  2: Table  S9). Similarly, Subtype 2 was associ-
ated with longer time to recovery (SHR 0.6, 95%CI 0.4 to 
0.8, p-value < 0.001) (Fig.  2, Additional file  2: Table  S9). 
When the study cohort was re-categorized to those not 
on IMV (WHO 5) and those on IMV or additional life 
support (WHO ≥ 6), the association of subtypes with all 
outcomes was only significant amongst those not on IMV 
(Fig. 2, Additional file 2: Table S9).

Table 1 (continued)

Control arm
(N = 142)

Investigational arm
(N = 258)

P value*

Cyclosporine – 9 (3%)

Cyproheptadine – 6 (2%)

IC14 – 40 (16%)

Icatibant – 38 (15%)

Narsoplimab – 22 (9%)

Pulmozyme – 21 (8%)

28‑day mortality 30 (21%) 71 (28%) 0.2

60‑day mortality 36 (25%) 82 (32%) 0.22

Numbers are presented as n (%) unless otherwise stated

BMI body mass index, LPM liters per minute

*Determined via Welch’s t‑test for normally distributed continuous variables, Wilcoxon rank‑sum for non‑normally distributed continuous variables, and Chi‑squared 
test or Fisher’s exact test for categorical variables
† Using the WHO ordinal scale for COVID‑19 severity; 5: hospitalized, noninvasive mechanical ventilation or high‑flow nasal cannula (HFNC); 6: hospitalized, intubation 
and invasive mechanical ventilation (IMV); 7: hospitalized, IMV + additional support such as pressors or extracardiac membranous oxygenation
‡ Completed course of steroid therapy prior to trial enrollment or receiving dexamethasone at the time of trial enrollment

Table 2 Fit statistics of latent class analysis results using clinical and protein biomarker data at study enrollment

BIC Bayesian Information Criterion

*Calculated using Vuong–Lo–Mendell–Rubin method to test whether a model with an additional class fits better than a model with one fewer class
† Model failed to replicate the maximum likelihood with up to 400 random starts

Number of subtypes BIC Entropy Number of participants per subtype P value*

N1 N2 N3 N4

1 29,780 400

2 29,454 0.83 292 108 0.01

3† 29,370 0.82 189 170 41 0.10

4† 29,328 0.83 152 132 75 41 0.11
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Table 3 Summary of patient characteristics by latent class analysis subtype assignment

Subtype 1
(N = 292)

Subtype 2
(N = 108)

P-value*

Variables included in LCA model
Age 57.7 ± 13.8 65.7 ± 13.5  < 0.0001

Male sex 192 (66%) 75 (69%) 0.56

BMI (median (IQR)) 32 (28 to 37) 32 (27 to 38) 0.47

Race 0.91

Not White or Caucasian 88 (30%) 30 (28%)

White or Caucasian 157 (54%) 57 (53%)

Unknown 47 (16%) 21 (19%)

Respiratory support  < 0.0001

≤ 15 LPM oxygen 32 (11%) 10 (9%)

> 15 LPM oxygen 204 (70%) 51 (47%)

Noninvasive mechanical ventilation 30 (10%) 10 (9%)

Invasive Mechanical ventilation 26 (9%) 36 (33%)

Labs†

Platelets  (109/L) 275 ± 91 225 ± 84  < 0.0001

Bicarbonate (mmol/L) 25.1 ± 5.8 21.8 ± 3.3  < 0.0001

Hematocrit (%) 40 ± 5 36 ± 6  < 0.0001

Bilirubin (mg/dL) 0.5 (0.4 to 0.7) 0.6 (0.4 to 0.9) 0.13

Creatinine (mg/dL) 0.8 (0.7 to 1) 1.4 (1.1 to 2.3)  < 0.0001

WBC  (109/L) 8.7 (6.2 to 11.9) 10.9 (7.7 to 14.9) 0.0002

Neutrophil:Lymphocyte 8.9 (5.7 to 14.9) 14.9 (8.8 to 27.3)  < 0.0001

PTT (s) 28.7 (26 to 32) 33 (28.3 to 45.1)  < 0.0001

CRP (mg/L) 54.3 (13.7 to 129) 108 (21 to 169) 0.01

BNP (pg/mL) 71 (32 to 177) 563 (174 to 1477)  < 0.0001

Biomarkers (median (IQR))

SARS‑CoV‑2 viral antigen protein (pg/mL) 732 (81 to 5,918) 1,358 (123 to 13,784) 0.01

Protein C (% normal) 118 (95 to 140) 89 (66 to 109)  < 0.0001

PAI‑1 (ng/mL) 6.5 (4.4 to 9.3) 6.6 (4.7 to 13.3) 0.17

ICAM‑1 (pg/mL) 660,243 (424,368 to 940,689) 724,537 (485,815 to 921,318) 0.44

sTNFR‑1 (pg/mL) 2,492 (1,851 to 3,259) 4,757 (3,605 to 6,627)  < 0.0001

IL‑6 (pg/mL) 15.5 (6.3 to 61.2) 28.9 (12.8 to 72.7)  < 0.0001

IL‑8 (pg/mL) 11.4 (7.0 to 17.7) 14.8 (8.8 to 26.5) 0.0002

Ang‑2 (pg/mL) 1,616 (1,035 to 2,552) 3,142 (1,948 to 5,272)  < 0.0001

sRAGE (pg/mL) 5,965 (3,272 to 10,643) 12,323 (7,368 to 18,280)  < 0.0001

IP‑10 (pg/mL) 394 (175 to 646) 850 (364 to 1,870)  < 0.0001

VEGF (pg/mL) 42.7 (21.6 to 82.8) 28.2 (15.7 to 52.2) 0.0003

MMP‑8 (pg/mL) 2,239 (1,302 to 4,046) 3,540 (1,990 to 6,337)  < 0.0001

SP‑D (pg/mL) 15,883 (7,667 to 26,658) 20,851 (9,970 to 38,126) 0.005

Ang‑1 (pg/mL) 8,208 (4,875 to 15,454) 5,745 (2,742 to 11,023) 0.0001

IL‑18 (pg/mL) 401 (310 to 543) 544 (412 to 703)  < 0.0001

Variables not included in LCA model
Time from symptom onset, days 8.8 ± 3.7 9.0 ± 5.3 0.70

Dexamethasone ≥ 6  mg‡ 282 (97%) 105 (97%) 0.99

Other COVID-19 treatments

Tocilizumab 56 (19%) 12 (11%) 0.08

Convalescent plasma 13 (5%) 7 (7%) 0.57

Inhaled nitric oxide 24 (8%) 12 (11%) 0.48

Epoprostenol 54 (19%) 24 (22%) 0.49

Neuromuscular blockade 82 (28%) 42 (39%) 0.05
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Additionally, we performed sensitivity analyses 
to ensure that associations between latent subtypes 
and clinical outcomes were not mediated by patients’ 
assigned treatment arms. We removed the 57 partici-
pants who received one of the four active study drugs for 
which outcome data from the I-SPY COVID Trial has 
not yet been published. The strong association of Sub-
type 2 designation with mortality at 28 days (42% vs 18%, 
p < 0.0001) and 60 days (46% vs 22%, p < 0.0001) persisted. 
Next, we adjusted Fine-Gray models for assigned treat-
ment arm in the full cohort of 400 patients. Subtype 2 
was still associated with a subdistribution hazard ratio 
(SHR) of death of 2.7 (95%CI 1.8 to 3.9, p-value < 0.001) 
and longer time to recovery (SHR 0.5, 95%CI 0.4 to 0.7, 
p-value < 0.001) compared to Subtype 1.

We used the parsimonious model described by Sinha 
et al [32] using IL-8, bicarbonate, and protein C levels to 
determine which patients in this cohort would have been 
classified as having hyper-inflammatory ARDS. Only 
one participant was classified as hyper-inflammatory 
using this approach, and this participant had a Subtype 2 
designation.

Longitudinal biomarker assessment
Longitudinal analyses were restricted to the 142 patients 
in the control arm. Pro-inflammatory biomarkers were 
higher across all time points in Subtype 2 compared 
to Subtype 1, and either remained elevated or slightly 
decreased over time (Fig.  3A). TREM-1 decreased over 
time in Subtype 2 but increased in Subtype 1, whereas 
sTNFR-1 decreased at a faster rate in Subtype 2 and 
remained relatively stable in Subtype 1. Of endothelial 
biomarkers, Ang-2 and thrombomodulin were higher 
and Ang-1 and VEGF were lower in Subtype 2 over time 
(Fig.  3B). Both epithelial biomarkers, SP-D and sRAGE, 
were higher across all time points in Subtype 2, with 
SP-D increasing and sRAGE decreasing in all patients 
(Fig. 3C). Of the coagulation biomarkers, PAI-1 and pro-
tein C, the latter was lower across all time points in Sub-
type 2 (Fig. 3D). PAI-1 decreased over time in Subtype 2 
but remained stable in Subtype 1. A higher proportion 
of Subtype 2 designated patients died in the first week of 
enrollment compared with Subtype 1 (Additional file  2: 
Table S10).

Numbers are presented as n(%) or mean ± SD unless stated otherwise

Ang = angiopoietin; BMI = body mass index; BNP = brain natriuretic peptide; CRP = C reactive protein; ICAM = intercellular adhesion molecule; IL = interleukin; 
IP = interferon‑gamma induced protein; IQR = interquartile range. MMP = matrix metalloproteinase; PAI = plasminogen activator inhibitor; PTT = partial 
thromboplastin time; SP‑D = surfactant protein D; sRAGE = soluble receptor for advanced glycation end products; sTNFR = soluble tumor necrosis factor receptor; 
TREM = triggering receptor expressed on myeloid cells; VEGF = vascular endothelial growth factor; WBC = white blood cell.

*Determined via Welch’s t‑test for normally distributed continuous variables, Wilcoxon rank‑sum for non‑normally distributed continuous variables, and Chi‑squared 
test or Fisher’s exact test for categorical variables
† Presented as mean ± SD or median(IQR) if variable demonstrated a skewed distribution
‡ Completed course of steroid therapy prior to trial enrollment or receiving dexamethasone at the time of trial enrollment

Table 3 (continued)

Subtype 1
(N = 292)

Subtype 2
(N = 108)

P-value*

Baricitinib 8 (3%) 0 0.11

Investigational arm 0.08

Apremilast 20 (7%) 11 (10%)

Aviptadil 15 (5%) 5 (5%)

Celecoxib/Famotidine 16 (5%) 2 (2%)

Cenicriviroc 31 (11%) 12 (11%)

Control 101 (35%) 41 (38%)

Cyclosporine 9 (3%) 0

Cyproheptadine 5 (2%) 1 (1%)

IC14 30 (10%) 10 (9%)

Icatibant 24 (8%) 14 (13%)

Narsoplimab 19 (7%) 3 (3%)

Pulmozyme 18 (6%) 3 (3%)

Razuprotafib 4 (1%) 6 (6%)

28‑day mortality 57 (20%) 44 (41%) < 0.0001

60‑day mortality 69 (24%) 49 (45%) < 0.0001
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Discussion
In this secondary analysis of data from a randomized 
controlled trial, we found that participants with severe 
COVID-19 were characterized by significant biological 
heterogeneity. Using a combination of clinical data and 
protein biomarkers, we detected two latent subtypes of 
severe COVID-19 respiratory failure with significantly 
different compositions of biomarkers of inflammation, 
endothelial injury, alveolar epithelial injury, and disor-
dered coagulation. Subtype 2 had significantly worse 
outcomes and was defined by higher baseline values 
of creatinine, sTNFR-1, BNP, Ang-2, and sRAGE and 
lower levels of protein C and bicarbonate among other 
differences. These subtypes differed from previously 

established COVID and non-COVID ARDS hyper- and 
hypo-inflammatory subtypes.

Though the subtypes, on average, demonstrate some 
differences in clinical parameters, no single clinical or 
biological parameter alone is sufficient for subtype desig-
nation. For instance, an older patient on IMV may appear 
clinically more worrisome but can still be designated as 
Subtype 1 based on the biological parameters incorpo-
rated into the model in our study. Indeed, a higher pro-
portion of Subtype 2 designated patients were receiving 
IMV at trial enrollment. However, in stratified analyses, 
the subtypes’ prognostic value was most notable among 
those not on IMV. The lack of association with mortal-
ity among those on IMV or additional life support may 

Fig. 1 Differences in the standardized values of each continuous variable by subtype assignment. The variables are sorted based on the degree 
of separation between the two subtypes. A standardized value of + 1 signifies that the mean value for a given subtype was one standard deviation 
higher than the mean value in the cohort as a whole. Ang = angiopoietin; BMI = body mass index; BNP = brain natriuretic peptide; CRP = C 
reactive protein; ICAM1 = intercellular adhesion molecule‑1; IL = interleukin; IP10 = interferon‑gamma inducible protein of 10 kDa; MMP8 = matrix 
metalloproteinase‑8; NLR = neutrophil to lymphocyte ratio; PAI1 = plasminogen activator inhibitor‑1; PTT = partial thromboplastin time; 
RAGE = soluble receptor for advanced glycation end products; SPD = surfactant protein D; TNFR1 = tumor necrosis factor receptor‑1; VEGF = vascular 
endothelial growth factors; WBC = white blood cell count
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be related to the small number of patients in these strata 
at study enrollment; nonetheless, the robust association 
with mortality among those not on IMV suggests that 
the subtypes capture pathobiology beyond the severity 
of acute respiratory failure. These findings have several 
implications. First, trials enrolling patients with severe 
COVID-19 as defined by respiratory failure status likely 
included a biologically heterogeneous patient popula-
tion, which may explain inconsistent results in trials of 

corticosteroids and immunomodulators [6, 8, 12, 35–38] 
Our findings suggest that current clinical approaches to 
recruiting trial participants may be generating biologi-
cally heterogenous samples. Second, the treatment para-
digm of patients with COVID-19, which primarily relies 
on the degree of respiratory failure, may be insufficient 
to identify those most likely to respond to therapies and 
at highest risk of poor outcomes. As steroids and immu-
nomodulators have side effects, fine-tuning the target 

Fig. 2 Clinical outcomes by latent class analysis (LCA) subtype assignment. A Mortality rates by subtype assignment stratified by WHO ordinal 
scale for COVID‑19 severity upon trial enrollment; Within strata comparisons done using Chi‑squared test or Fisher’s exact test where appropriate 
and p‑value < 0.05 is depicted via Asterix. B Survival and recovery for Subtype 2 compared with Subtype 1 stratified by WHO ordinal scale 
for COVID‑19 severity upon trial enrollment; For time to death, estimates are derived from Fine‑Gray subdistribution hazard model with recovery 
as the competing event; For time to recovery, estimates are derived from Fine‑Gray subdistribution hazard model with death as the competing 
event. ***P value < 0.001. WHO 5: hospitalized, noninvasive mechanical ventilation or high‑flow nasal cannula (HFNC); WHO 6: hospitalized, 
intubation and invasive mechanical ventilation (IMV); WHO 7: hospitalized, IMV + additional support such as pressors or extracardiac membranous 
oxygenation
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population most likely to respond to these medications 
would be desirable. Third, though most patients in our 
cohort did not meet the Berlin criteria for ARDS, our 
findings suggest that biological derangements leading to 
poor outcomes start earlier than the onset of IMV. In line 
with the new Global Definition of ARDS that includes 
those on high flow nasal oxygen [39], studying subtypes 
of non-COVID ARDS earlier in the course of disease and 

prior to the initiation of mechanical ventilation may both 
inform the natural trajectory of ARDS subtypes and offer 
an optimal window to deliver targeted therapies. Under-
standing early signs of biological pathways of injury is 
the first step toward the identification of treatable traits 
[40]. Future studies comparing our findings to those of 
patients with other types of severe viral pneumonia and/
or ARDS from non-COVID related triggers will further 

Fig. 3 Change in log10 biomarker concentration over time by subtype assignment in the control arm (N = 142). A Biomarkers of inflammation, 
B endothelial injury, C alveolar epithelial injury, and D disordered coagulation. Y‑axis is the log10 concentration of biomarker. Estimates with 95% 
confidence intervals derived from linear mixed effects models. Asterisks denote significant difference in the slope of biomarker change over time 
between Subtype 1 and Subtype 2 based on Chi‑squared test of interaction. *p value < 0.05.  **p value < 0.005. ***p value < 0.001
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aid in identifying shared pathways of injury that can be 
targeted for therapies.

The latent subtypes in this cohort of patients with 
hypoxemic respiratory failure had remarkable differ-
ences from the hyper- and hypo-inflammatory subtypes 
of COVID and non-COVID ARDS [20, 25]. Early in the 
pandemic, Sinha and colleagues discovered two latent 
subtypes of COVID-19 ARDS, as defined by the Berlin 
criteria, using LCA of readily available clinical data and 
IL-6. The authors then applied a validated clinical classi-
fier model for non-COVID ARDS subtypes to phenotype 
their study cohort into hyper- and hypo-inflammatory 
ARDS. Over 80% of the participants in each of the two 
COVID ARDS subtypes overlapped with the correspond-
ing non-COVID hypo- and hyper-inflammatory ARDS 
subtypes. In contrast, nearly all patients in our study 
cohort were categorized as hypo-inflammatory using 
the same parsimonious model. The lack of overlap of our 
subtypes with hyper- and hypo-inflammatory ARDS as 
compared with those of Sinha et al. is likely multi-facto-
rial. First, most of our study cohort is patients with less 
severe respiratory failure than ARDS as defined by the 
Berlin Criteria. Our ability to still identify a latent sub-
type with over 40% mortality further supports the notion 
that biological signals of adverse outcomes are detectable 
earlier than the onset of IMV. Indeed, similar to hyper-
inflammatory ARDS, Subtype 2 designated patients dem-
onstrated higher levels of sTNFR-1 and lower levels of 
bicarbonate, protein C, and platelets compared to Sub-
type 1, suggesting similar pathways of injury. Biomarkers 
such as IL-6, IL-8, PAI-1, and ICAM-1, key to class des-
ignation in hyper- and hypo-inflammatory ARDS [20], 
were notably less class separating in severe COVID-19 
subtypes, potentially rendering them less useful in phe-
notyping this patient population. Altogether, these dif-
ferences may be related to differences in host–pathogen 
interactions over time in COVID and non-COVID respir-
atory failure as well as the impact of dexamethasone on 
biomarker concentrations in our study cohort. A recent 
study by Verhoef et  al. performed latent profile analysis 
in a cohort of COVID-19 patients who presented to four 
different medical centers using residual blood samples 
collected during routine care [28]. The authors similarly 
found two latent profiles associated with significantly 
different clinical outcomes. The profiles demonstrated 
similar trends in the association between biomarkers of 
inflammation and endothelial injury as the subtypes in 
our study, although in contrast to our findings, IL-6 lev-
els were the most important variable in profile designa-
tion. We are unable to directly compare the subtypes we 
observed to these latent profiles, given important differ-
ences between the cohorts (e.g., inclusion of outpatients 
in that cohort, variable corticosteroid usage) and the lack 

of a classifier model for the latent profiles; however, taken 
together, these two studies indicate that important bio-
logical heterogeneity is clearly present even in relatively 
milder and earlier forms of acute respiratory illness. 
More studies on patients presenting earlier in respiratory 
disease onset are warranted to validate these findings.

Patients with a Subtype 2 designation in our study were 
characterized by a higher degree of inflammation, alveo-
lar epithelial injury, endothelial injury, and coagulation 
abnormalities. Interestingly, SARS-CoV-2 antigen level, 
though higher in Subtype 2, was less important to the 
model than the aforementioned biomarkers. The asso-
ciation between viral RNA in plasma with biomarkers of 
inflammation, injury, and poor outcomes in COVID-19 
has been established [41–43], and studies have found a 
similar association between viral antigen levels and clini-
cal outcomes [44, 45]. Though our analyses do not allow 
conclusive causal inference, one potential mechanism for 
the pattern of biomarker derangements in this cohort 
may be that a higher viral burden at the onset of disease 
leads to more severe initial lung injury, triggering both 
local and systemic inflammation that mediate poor out-
comes. Further investigation of pathogenic differences in 
host response in those with acute hypoxemic respiratory 
failure are needed.

Not only were the two subtypes in this study bio-
logically different at baseline, but this difference was 
maintained over the first 7  days of study enrollment. 
Subtype 2 was characterized by persistent inflamma-
tion, endothelial dysfunction, epithelial injury, and 
abnormal coagulation throughout the first week of trial 
enrollment. Some biomarker trajectories demonstrated 
a temporal trend toward convergence. Given similar 
rates of immunomodulator and dexamethasone use 
between the subtypes, the improving trend over time 
in Subtype 2 may have been in part due to an imbal-
ance between those who recovered and those who died 
between the two subtypes during the first week of the 
study (Additional file 2: Table S9). Nonetheless, the pat-
tern of persistent biomarker derangements in Subtype 
2 raises important considerations. Baseline biomarker 
differences between the two subtypes persist beyond 
the immediate period in which the subtypes are defined, 
rendering them more likely to be clinically meaningful. 
For instance, high levels of TREM-1, a marker of innate 
immune response, have been associated with disease 
severity, duration of mechanical ventilation, and clinical 
outcomes in COVID-19 [46, 47]. Indeed, TREM-1 inhi-
bition in those with severe COVID-19 demonstrated a 
trend toward reduction in 28-day mortality in a phase 
2 randomized controlled trial [48]. Surprisingly, higher 
baseline TREM-1 levels did not predict beneficial 
response from therapy, suggesting that cross-sectional 
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single biomarker measurements may not adequately 
capture treatment responsive subsets of patients. Simi-
larly, a randomized, double-blind, placebo-controlled 
trial of oral imatinib, a tyrosine-kinase inhibitor, found 
that imatinib significantly reduced 90-day mortality in 
hospitalized adults with severe COVID-19 [49]. In sec-
ondary analyses, the effect of imatinib on mortality was 
fully mediated by a reduction in IL-6 levels, yet baseline 
plasma IL-6 concentration did not moderate the effect 
of imatinib on outcomes [50]. Indeed, using a panel of 
biomarkers, the authors found that a cluster of patients 
marked by increased levels of biomarkers of alveolar 
epithelial injury was the only one that experienced a 
meaningful mortality reduction with imatinib, suggest-
ing that a complex interplay of alveolar epithelial injury, 
endothelial barrier integrity, and systemic inflamma-
tion is likely needed to experience mortality reduction 
from imatinib. Subtype 2 designated patients in our 
study appear to capture such a population of patients. 
The persistent dysregulation in these pathways and the 
differential mortality rates early in our study further 
suggest that interventions targeting these pathways of 
injury may have the highest value at the earliest time-
point of delivery. As we transition out of the pandemic, 
applying these insights to patients with non-COVID 
acute hypoxemic respiratory failure is worth consid-
eration. Tools for real time subtyping in non-COVID 
ARDS are emerging [51] and capacity building stud-
ies are underway, laying the foundation for future tri-
als to randomize patients based in part on biological 
subtypes. Understanding similarities and differences 
in biological heterogeneity between COVID and non-
COVID respiratory failure is important to aid in target-
ing therapies to those with shared biological pathways 
of injury.

Our study has notable strengths. Patients in this 
cohort were recruited from a variety of academic and 
community hospitals across the United States, yielding 
a diverse cohort which enhances generalizability. Fur-
thermore, participants were enrolled within a clinical 
trial with largely uniform clinical practices. The large 
panel of biomarkers in our study were carefully cho-
sen a priori based on data from non-COVID ARDS as 
well as early findings in COVID-19. Our study also has 
limitations. Only participants with biospecimens avail-
able at day 1 were included, which may have introduced 
selection bias, although the clinical characteristics and 
outcomes of the patients without plasma were similar 
to those included. In the absence of a separate valida-
tion cohort, we did not attempt to develop a classifier 
model for pragmatic identification of these subtypes for 
research or clinical care. Lastly, given the high mortal-
ity rate in this cohort, informative missingness due to 

different survival rates between the subtypes limits any 
conclusions that can be drawn from longitudinal bio-
marker analyses.

Conclusions
In this secondary analysis of data from a randomized con-
trolled trial of hospitalized adults with severe COVID-19, 
we found evidence of two latent subtypes with divergent 
clinical outcomes. Subtype 2, comprising 27% of the 
cohort, was characterized by persistent inflammation, 
epithelial and endothelial injury, as well as disordered 
coagulation and had more than twice the mortality of 
Subtype 1. Latent biological heterogeneity may be con-
tributing to negative findings in trials of pharmacother-
apies. Early subtyping of patients with acute hypoxemic 
respiratory failure has the potential to identify biological 
pathways underlying clinical outcomes, reveal treatment-
responsive subgroups of patients, and offer an earlier 
window for study of targeted therapies.
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