LETTER

Open Access

VCO₂ calorimetry: stop tossing stones, it's time for building!

Elisabeth De Waele^{*}, Patrick M. Honoré and Herbert D. Spapen

See related research by Stapel et al. http://ccforum.biomedcentral.com/articles/10.1186/s13054-015-1087-2

Keywords: Energy expenditure, Nutrition, Intensive care unit

We followed with interest the discussion [1, 2] fueled by the study of Stapel et al. [3] who reported fairly accurate assessment of energy expenditure (EE) in critically ill patients based on ventilator-derived carbon dioxide production (VCO₂). The proposed technique is elegant and valid but has inherent limitations. It is applicable in patients who are in one way or another ventilator-dependent but not in spontaneously breathing yet oxygen-dependent subjects. We concur that VO₂ is the most relevant variable for EE measurement. However, the most accurate and precise estimation of EE in a critically ill population can only be obtained by sampling of inspired and expired oxygen/ carbon dioxide concentrations and measuring expired gas flow. This is the core task of indirect calorimetry [4].

Initiative has been undertaken to develop a 'full option', easy-to-use, accurate, and affordable indirect calorimeter. The project is supported by the European Society of Intensive Care Medicine and the European Society of Parenteral and Enteral Nutrition [5] and has actually reached Technology Readiness Level. It is probably only a matter of time before such a device will render all current mathematical uproar obsolete.

Abbreviations

EE: Energy expenditure; VCO2: Carbon dioxide production

Acknowledgements

Not applicable.

Funding

The authors declare that they have received no external funding.

Availability of data and materials

Not appropriate.

* Correspondence: Elisabeth.Dewaele@uzbrussel.be

ICU Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 101 Laarbeeklaan, 1090 Brussels, Belgium

Authors' contributions

EDW designed the paper; EDW, PMH, and HDS participated in drafting the manuscript, and have read and approved the final version.

Authors' information

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not appropriate.

Ethics approval and consent to participate Not appropriate.

Clinical trial registration

Not appropriate.

Published online: 16 December 2016

References

- Singer P. Simple equations for complex physiology: can we use VCO2 for calculating energy expenditure? Crit Care. 2016;20:72.
- Pielmeier U, Andreassen S. VCO2 calorimetry is a convenient method for improved assessment of energy expenditure in the intensive care unit. Crit Care. 2016;20:224.
- Stapel SN, de Grooth HJS, Alimohamad H, Elbers PW, Girbes AR, Weijs PJ, et al. Ventilator-derived carbon dioxide production to assess energy
- expenditure in critically ill patients: proof of concept. Crit Care. 2015;19:370.
 Frankenfield DC. On heat, respiration, and calorimetry. Nutrition. 2010; 26(10):939–50.
- Oshima T, Berger MM, De Waele E, Guttormsen AB, Heidegger CP, Hiesmayr M, et al., A position paper by the ICALIC study group. Indirect calorimetry in nutritional therapy. Clin Nutr. 2016;(16):30142-X.

© The Author(s). 2016 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.