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Long-term sequelae from acute kidney injury:
potential mechanisms for the observed poor
renal outcomes
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Abstract

This article is one of ten reviews selected from the
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at http://ccforum.com/series/annualupdate2015.
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clear association does not necessarily confer causation.
Indeed, epidemiological studies often struggle to identify
Introduction
Renal disease is a global phenomenon with the incidence
of both acute and chronic renal insufficiency continuing
to rise [1,2]. Acute kidney injury (AKI) is a known inde-
pendent predictor of hospital mortality despite its multi-
factorial nature. After an episode of AKI, there are four
potential outcomes [3]:

I. full recovery of renal function to baseline;
II. incomplete recovery of renal function resulting in

chronic kidney disease (CKD);
III. exacerbation of pre-existing CKD accelerating

progression towards end-stage renal failure (ESRF);
IV. non-recovery of function leading to ESRF.

It was previously assumed that those who recovered
kidney function after an episode of AKI were faced with
a relatively benign course with favorable outcomes.
However, there is now increasing concern that this is
not neccesarily the case and these individuals may be at
risk of poor long-term outcomes through the develop-
ment of CKD (including ESRF), further episodes of AKI
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and an increased risk of premature death. In the follow-
ing review, we will describe the main pathogenetic links
between AKI and CKD and introduce some potential
key players.
Long-term outcomes after acute kidney injury
The observation that AKI and CKD may be intimately
linked has been the subject of several recent studies
[4-8]. However, as is often the case, demonstration of a

accurate pre-morbid and post-AKI renal function in
order to precisely interpret long-term data. For example,
in retrospective studies follow‐up data may be missing
or may have been captured at times of intercurrent ill-
ness, hence blunt endpoints, such as dialysis dependence
or mortality, are used. In addition, serum creatinine and
the derived estimated glomerular filtration rate (eGFR)
are the only markers of renal function used in routine
clinical practice. Their limitations are well known, and
they may not accurately reflect renal function. Critical
illness in particular, may be associated with significant
decreases in serum creatinine through many potential
mechanisms and these changes may persist through to
hospital discharge hence confounding assessment of
renal function [9]. Moreover, elevated serum creatinine
levels at hospital discharge may represent pre-existing
CKD rather than non-recovery, depending on the com-
pleteness of data availability.
Early studies suggesting a link between AKI and CKD

were hindered by sample size as well as selection of
population groups but recent studies are based on larger
cohorts with longer follow-up data. For example, Lo
et al. retrospectively analyzed more than 500,000 pa-
tients with a baseline pre-admission eGFR > 45ml/min2

who survived a stay in hospital [7]: 343 patients with
dialysis-dependent AKI survived their ICU stay and were
still dialysis-free at 30 days. Comparison between this
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cohort and patients without dialysis-require AKI demon-
strated an increased risk of CKD stage 4 or 5 of 1.7/100
person-years in the non-AKI group and 47.9/100 person-
years in the AKI group (adjusted hazard ratio [HR] 28.1;
95% confidence interval [CI] 21.1–37.6). Of note, 41 pa-
tients developed long-term dialysis dependency and all
stemmed from the AKI group. Similarily, Wald et al. com-
pared 3,769 adults who received renal support after an
episode of AKI to 13,598 matched controls who did not
require acute renal replacement therapy (RRT) [10]. After
a median follow-up of 3 years, the incidence of chronic
dialysis in the AKI cohort was 2.63/100 person-years com-
pared to 0.91/100 person-years among control participants
(adjusted HR, 3.23; 95% CI, 2.70–3.86).
Interrogation of large databases continues to support

the hypothesis that an AKI event heralds an increased
risk of CKD. Using the Medicare database in the US,
Ishani et al. identified patients ≥ 67 years old over a 2-year
period [11]. More than 200,000 patients who survived to
hospital discharge were included with patients categorized
as having AKI alone, CKD alone, AKI on background of
CKD, or neither. The development of ESRF at 2 years was
identified by cross-reference with the US Renal Data Sys-
tem. Predictably, when compared to patients with neither
CKD nor AKI, the highest risk of ESRF was for those with
acute-on-chronic kidney disease (adjusted HR 41.19; 95%
CI 34.58–49.08). Interestingly, patients with AKI alone
had a significantly higher risk of developing ESRF than
patients with CKD alone (adjusted HR 13.00; 95% CI
10.57–15.99 versus adjusted HR 8.43; 95% CI 7.39–9.61).
However, this study is limited in that it relied on adminis-
trative diagnostic coding, which may not have been suffi-
ciently sensitive. For example, the absence of a coded
diagnosis for CKD does not reliably indicate normal base-
line function.
Existing evidence suggests that the relationship be-

tween AKI and risk of CKD depends on the presence
and also the severity of AKI. Chawla et al. analyzed the
data of 5,351 patients in a Veterans Affairs cohort with
normal baseline function admitted with AKI [12]. They
developed a number of models to predict the likelihood
of developing CKD stage 4 or worse following hospital
discharge and showed by multivariate analysis that severity
of AKI, whether by RIFLE (Risk – Injury – Failure – Loss –
End stage) classification or mean serum creatinine, was a
strong predictor of CKD stage 4. Advanced age, low serum
albumin and the presence of diabetes were also predictive.
In a meta-analysis of 13 retrospective studies including

those cited above, the pooled incidences of CKD and
ESRF post-AKI were 25.8/100 person-years and 8.6/100
person-years, respectively [13]. Compared to patients
without AKI the adjusted HRs were 8.8 for developing
CKD (95% CI 3.1–25.5), 3.1 for ESRF (95% CI 1.9–5.0)
and 2.0 for mortality (95% CI 1.3–3.1). Furthermore,
‘recovery’ of AKI as defined by a recorded eGFR within
90 days post-hospitalization that was at least 90% of the
baseline eGFR was still associated with the development
of CKD [8]. Cohort patients met strict criteria, including
a baseline eGFR > 60 ml/min, no history of renal disease
(including proteinuria) and an increase of at least 50% in
serum creatinine during their index admission. In this
single center study, 1,610 patients were matched with
3,652 controls. The risk of de novo CKD was nearly dou-
bled (adjusted HR 1.9; 95% CI 1.75–2.09).
To assess these important observations in more detail,

there are several ongoing prospective studies focusing
on the link between AKI and CKD. The Assessment,
Serial Evaluation and Subsequent Sequelae of Acute Kid-
ney Injury (ASSESS-AKI) study is a North American
multicenter project including adult and pediatric cohorts
[14]. Detailed annual reviews will be conducted for up to
4 years with blood and urinary biomarkers. Similarly, the
At Risk in Derby (ARID) study is a UK, single center,
case–control study aiming to recruit 1,084 hospitalized
patients, again with blood and urine samples collected at
designated time points [ISRCTN25405995]. The results
of these studies are awaited with interest.

Potential mechanisms underlying the progression
of AKI to CKD
In AKI, several processes are initiated in both injured
and regenerating tissues, including premature cell-cycle
arrest, secretion of bioactive molecules, recruitment of
infiltrating inflammatory and stem cells, and activation
of myofibroblasts and fibrocytes [4]. Some of these path-
ways are directly linked to processes that are believed to
cause progression of CKD.

Common risk factors/pre-existing comorbidities
There is intuitively an overlap between risk factors for
AKI and progressive CKD. In many patients, the factors
that predispose to AKI continue to exist after the epi-
sode of AKI has finished. Important risk factors for pro-
gressive CKD leading to ESRF include pre-existing CKD
and proteinuria. Both signify significant structural and
functional changes within glomeruli, tubulo-interstitial
compartments and the renal vasculature, which may
leave the kidney particularly vulnerable to further injury
in the presence of nephrotoxins or intercurrent illness.
Importantly, in CKD, the increase in serum creatinine
for a given fall in GFR is greater than in patients with
normal baseline renal function due to the non-linear re-
lationship between serum creatinine and GFR. As a con-
sequence, the diagnosis of AKI is more likely to be made
using conventional consensus criteria.
The importance of proteinuria is apparent in the results

described in a prospective cohort of 11,200 participants in
the Atherosclerosis Risk in Communities (ARIC) study.
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The association between baseline urine albumin-to-
creatinine ratio and eGFR with hospitalizations or death
with AKI was examined [15]. Using a urine albumin-to-
creatinine ratio < 10mg/g as a reference, the relative haz-
ards of AKI after an average of 8-years follow-up, adjusted
for age, sex, race, cardiovascular risk factors, and cat-
egories of eGFR were 1.9 (95% CI 1.4–2.6), 2.2 (95% CI
1.6–3.0), and 4.8 (95% CI 3.2–7.2) for urine albumin-to-
creatinine ratio groups of 11–29 mg/g, 30–299 mg/g,
and ≥ 300 mg/g, respectively. There was a similar correl-
ation in risk of AKI with decreasing eGFR groups. The
impact of pre-existing CKD and proteinuria was the
focus of a Canadian study that retrospectively analyzed
outcomes of 920,985 patients who had had their eGFR
and urine dipstick recorded between 2002 and 2007 [16].
The authors not only demonstrated that the risk of AKI
rose cumulatively with worsening CKD and increased
proteinuria but that this risk continued post-AKI with an
increased chance of reaching the combined endpoint of
ESRF or doubling of the serum creatinine. Harel et al.
followed survivors of dialysis-dependent AKI who had re-
covered renal function [17]. They showed that pre-
existing CKD (HR 3.86; 95% CI 2.99–4.98), hypertension
(HR 1.82; 95% CI 1.28–2.58) and a higher Charlson co-
morbidity index score (HR 1.10; 95% CI 1.05–1.15/per
unit) were significantly associated with risk of progres-
sion to ESRF.
What is clear, is that there is homogeneity among

many of the risk factors for both AKI and CKD. For ex-
ample, the baseline characteristics of patients who de-
velop AKI are often significantly different to those who
do not. Hsu et al. compared 1,746 dialysis-requiring AKI
patients with 600,820 controls and found that the trad-
itional risk factors for CKD progression (pre-existing
CKD, proteinuria, hypertension and diabetes) were all
found to be independently associated with risk of severe
AKI [18]. Bucaloiu et al. reported that patients with AKI
had a significant preponderance of other ‘traditional
renal risk factors’, such as a history of hypertension, cor-
onary artery disease, vascular disease, chronic heart fail-
ure, dyslipidemia, chronic lung or liver disease, cancer
and hypoalbuminemia [8]. These conditions per se, as
well as their potential treatments, have the potential to
contribute to a decline in kidney function together with,
as well as independently of, AKI.

Glomerular hyperfiltration
In many models of acute renal disease, a loss of nephron
mass and resultant hyperfiltration in the remaining glom-
eruli have been described. Similar to the sequelae follow-
ing subtotal nephrectomy, it has been postulated that this
results in hypertrophy of the residual glomeruli through
increased work [4,6]. As a result, tubular workload and O2

consumption increase because of the increased flow. This
can lead to hypoxic signaling and stimulation of tubulo-
interstitial fibrosis, the latter of which is a significant com-
ponent in the development of CKD [4,6].

Mitochondrial dysregulation
Recent findings have revealed striking morphological
changes within mitochondria during cell injury. In
health, mitochondria constantly undergo fission and fu-
sion [19]. During cell injury, the dynamics are shifted to
fission, i.e., the production of short mitochondrial rods
or spheres. This type of mitochondrial fragmentation is
associated with damage in the outer and inner mem-
branes of the organelles, membrane leakage, decreased
function and consequent cell death. Emerging evidence
has suggested a pathogenic role of mitochondrial fragmen-
tation in AKI [19,20]. This may be related to an increase
in non-compartmentalized reactive oxygen species (ROS)
formation coupled with a loss of competent antioxidant
systems. The blockade of mitochondrial fragmentation has
a renoprotective effect in both ischemic and cisplatin-
induced AKI [20].
While cell death is the predominant effect of mito-

chondrial dysregulation, mitochondrial fragmentation
may have a less dramatic chronic impact under certain
circumstances. For example, Funk and Schnellmann
demonstrated a persistent disruption of mitochondrial
homeostasis after AKI, which in turn may result in sub-
optimal cellular respiration, reduction in cellular adenosine
triphosphate (ATP) and consequent tissue dysfunction, all
contributing to the development of chronic damage [21].
It may well be that targeting mitochondrial dynamics for
the therapy of AKI and prevention of CKD has a potential
role but more preclinical studies are necessary to test this
hypothesis.

Endothelial injury and reduced capillary density
Several different animal models have demonstrated di-
minished vascular density after an episode of AKI, espe-
cially in foci of tubulo-interstitial fibrosis [4,22-24]. Such
vascular rarefaction leads to the activation of hypoxia-
inducible pathways and promotion of pro-inflammatory
and pro-fibrotic processes [6]. In a vicious circle, capil-
lary rarefaction, hypoxic signaling and tissue hypoxia
may mutually reinforce each other leading to further
damage and fibrosis.

Tubulo-interstitial inflammation/fibrosis
Tubulo-interstitial fibrosis is a predominant feature of
CKD following AKI. Tubular hypertrophy and reduced ca-
pillary density play an important role in the pathogenesis.
In addition, inflammation has been shown to be a key
process in both ischemic and septic AKI, character-
ized by interstitial neutrophil infiltration during the
acute phase and monocytic-lymphocytic infiltration in
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later stages [4,6]. Monocyte infiltration potentiates in-
jury as well as promoting fibroblast proliferation and
consequent fibrosis [6]. Such pro-fibrotic processes are
initiated and maintained by ongoing production and se-
cretion of a variety of peptides, including cytokines and
growth factors. Although they are necessary for repair and
tubule regeneration, these bioactive molecules also have a
stimulating effect on perivascular fibroblasts and initiate
fibrosis [6].
These cellular and paracrine processes combined with

changes in tissue architecture lead to altered anatomical
relationships between important structures further pro-
moting fibrosis.

Potential key regulators
Transforming growth factor β
Transforming growth factor-β (TGF-β) is a key profibrotic
cytokine that exerts a broad range of actions in the kidney
in both health and disease [25]. AKI is a pro-inflammatory
condition involving a complex interaction of cytokines,
various renal cell types and infiltrating leukocytes [26,27].
TGF-β is upregulated in AKI and has a direct, detrimental
effect via initiation of renal tubular apoptosis and extracel-
lular matrix deposition [28,29]. Up-regulation of TGF-β
continues into the recovery phase. Animal research using a
bilateral ischemia/reperfusion model demonstrated recov-
ery of renal function and normal histology at 4 and 8 weeks
post-injury but clear evidence of tubulo-interstitial fibrosis
and high levels of TGF-β expression at 40 weeks [30].
Urinary TGF-β levels reflect renal production and are ele-
vated in a wide range of renal disease. Although TGF-β
may have a role in AKI, its role in predicting the risk of
CKD post-AKI has yet to be defined [31].

Endothelin-1
The kidney is both an important target as well as a
source of the potent vasoconstrictor and mitogen,
endothelin-1 (ET-1), which is mainly produced by endo-
thelial cells. ET receptors are widely distributed within
the human kidney and are present as two sub-types [32].
ET A receptors are localized to vascular smooth muscle
notably in the glomeruli, vasa recta and arcuate arteries,
and ET B receptors are predominantly localized in the
medulla. In AKI, circulating and tissue ET-1 levels rise
and ET receptor gene expression increases resulting in
both endothelial dysfunction and enhanced vasoconstric-
tion in different vascular beds. Studies which included
ET-1 gene deletion, or blockade of the ET receptor, miti-
gated the initiation phase of ischemic, endotoxemic, or
rhabdomyolysis-induced AKI [33-35].
However, data are conflicting. At least five studies have

shown that ET-1 receptor blockade either conferred no
functional protection, or worsened post-ischemic AKI
[36-40]. In a more recent ischemia-reperfusion model in
mice undergoing unilateral ischemia without contralat-
eral nephrectomy, an increase in intrarenal ET-1 pro-
duction was observed, along with increased expression
of the ET A receptor and evidence of ET-1 gene activa-
tion alongside progressive histological changes and a
40% loss of renal mass [41]. Treatment with atrasentan,
an ET A receptor antagonist ameliorated microvascular
injury and abrogated the loss in renal mass.
The mechanisms underlying the effects of ET-1 and

ET receptor blockers remain unclear. ET-1 is known to
alter intrarenal vascular tone but may also change sys-
temic hemodynamics and affect oxidative stress and in-
flammatory processes [32,42,43]. Future research may
determine the role of ET A and B receptor blockers, ei-
ther alone or in combination.

Galectin-3
Galectin-3 is a β-galactoside–binding lectin that has
emerged as a key regulator of inflammation and fibrosis. It
is highly evolutionarily conserved and plays an important
role in several diverse biological processes and disease
states [44]. Galectin-3 is strongly linked to the development
of organ fibrosis in multiple sites [45-49]. The common
pathways involve macrophage activation, TGF-β upregu-
lation, fibroblast proliferation and collagen deposition.
Galectin-3 knockout mice are resistant to the development
of fibrosis, including that in the kidney [45,47,50-52].
A retrospective analysis of 2,450 patients who partici-

pated in the Framingham Offspring study demonstrated
that elevated levels of plasma galectin-3 were associated
with increased risks of rapid GFR decline and of incident
CKD in the community [53].
There has been intense interest in the setting of

chronic heart failure in which galectin-3 has been shown
to have an emerging role in the prediction, diagnosis
and prognosis of this condition, presumably due to its
pathogenic role in cardiac fibrosis [54-62]. Heart failure
studies also demonstrated that galectin-3 levels were in-
versely correlated to GFR [57,63-65].
The effects of galectin-3 in AKI are far from clear. One

group studied two models of AKI in the rat (ischemic and
nephrotoxic) and found that galectin-3 was intensely up-
regulated and prevented chronic tubular injury by limiting
apoptosis, enhancing matrix remodeling and attenuating
fibrosis [66]. However, another group using an ischemia-
reperfusion model in wild-type versus knockout mice
demonstrated that in early AKI the knockout mice seemed
protected, with lower levels of interleukin-6, fewer ROS,
less macrophage infiltration and lower peak concentra-
tions of urea [67]. Using modified citrus pectin to reduce
galectin-3 expression in mice, the severity of AKI observed
was reduced following nephrotoxic insult [68].
These observations make galectin-3 an attractive candi-

date molecule to explain the demonstrable link between



Figure 1 Pathophysiological processes involved in the acute kidney injury (AKI)-chronic kidney disease (CKD) pathway. HIF: hypoxia-inducible
factor; TGF: transforming growth factor.
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AKI and CKD. It is upregulated in AKI and serum levels
appear to rise with renal impairment. Furthermore, it has
pro-fibrotic actions up stream to TGF-β. More research in
this area is awaited.

Endothelial hypoxia-inducible transcription factor (HIF)
Chronic renal hypoxia may also play a role in progressive
renal disease, in part due to vasoconstriction and reduced
capillary density. During periods of renal hypoxia, the kid-
neys initiate adaptive processes to facilitate endurance and
maintain renal oxygenation in order to preserve tubular
integrity. Hypoxia also affects the expression of potentially
protective genes, which participate in tissue oxygenation,
cell metabolism and survival [69]. Proximal tubular cells
are highly sensitive to hypoxia because they are principally
dependent on oxidative catabolism [69]. In contrast, distal
tubular cells are able to use glycolysis and endure severe
hypoxic challenges better, provided that transport dimin-
ishes [69,70].
Hypoxia-inducible factors (HIFs) are key regulators of

gene expression in response to declining PO2 [71]. Upon
hypoxia, HIF dimers translocate into the nucleus where
they activate various genes involved in the relevant adap-
tive responses. HIF-mediated genes act to ameliorate hyp-
oxia, counteract oxidative stress and improve cell survival.
Although HIF protects the kidney against AKI and more
than 100 HIF target genes have already been identified, in-
trinsic HIF activation is submaximal in AKI [72]. There is
also some evidence that excessive activation of HIF may
be deleterious and induce interstitial fibrosis and cyst for-
mation, suggesting a complex interaction between AKI
and CKD via hypoxia and HIF activation [72,73].

Conclusion
There is a strong intimacy between AKI and CKD. By
mutually reinforcing the severity of the other, complex
processes lead to the acceleration of disease progression
(Figure 1). Much of the burden of poor outcomes is re-
lated to co-morbid disease, which in itself needs correct
management. Other important pathogenic mechanisms
that pave the road from AKI to CKD include glomerular
hyperfiltration and hypertrophy, mitochondrial dysregula-
tion, cellular infiltration and paracrine actions of bioactive
molecules, reduced capillary density and promotion of
tubulo-interstitial fibrosis. Interestingly, these processes
are independent of the original insult or cause of AKI.
Endothelin-1, TGF-β, serum galectin-3 and HIF appear to
play important roles in these pathways and may be prom-
ising target molecules for future intervention studies.
The hope is that future prospective studies will provide

further information on the specific risks of CKD after
AKI, identify markers of poor outcomes and inform po-
tential preventative strategies. The optimal follow-up and
management of patients surviving an episode of AKI have
no evidence base to-date. However, measuring a true
post-recovery serum creatinine, quantifying degree of
proteinuria and identifying any factors that pose a risk of
recurrent AKI or progression of CKD seem prudent.
Currently, management is limited to optimization of

co-morbid conditions (e.g., diabetes, heart failure, hyper-
tension, fluid balance) and avoidance of nephrotoxic in-
sults. Where impaired eGFR or proteinuria is present,
referral to a nephrologist may be appropriate.
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