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ACTH = adrenocorticotrophic hormone; BBB = blood–brain barrier; CRF = corticotrophin-releasing factor; IL = interleukin; LPS = lipopolysaccha-
ride; NF-κB = nuclear factor-κB; NO = nitric oxide; NOS = nitric oxide synthase; TLR = Toll-like receptor; TNF = tumour necrosis factor.
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Introduction
It is clear that septic shock can be associated with a spectrum
of cerebral damage and dysfunction [1–3]. Reciprocal
interactions between the immune and central nervous systems
are now considered to be major components of the host
response in septic shock. This is the case even though the
brain is often thought of as a privileged organ – one that is
anatomically sequestered from the immune system by the
blood–brain barrier (BBB), lacking a lymphatic system and
with low expression of histocompatibility complex antigens on
its parenchymal cells. Because the central nervous system
controls a wide range of physiological functions that are
crucial to maintaining homeostasis and orchestrating the host
response at behavioural, neuroendocrine and autonomic levels
[4–7], disturbances in any of these adaptive functions may
deleteriously influence the course of septic shock. For
example, they may perpetuate immune-inflammatory
responses and haemodynamic failure. Here we review the
areas of the brain that are involved in the response to
infection, the pathways and mechanisms of immune–brain

interaction during septic shock, and clinical aspects of
cerebral dysfunction in human septic shock.

Neuroanatomy of the brain response to
infection
The systemic response to infection, an example of the
response to noxious stress that was first described nearly 70
years ago by Seyle [8], involves a complex, organized and
coherent interaction between immune, autonomic, neuro-
endocrine and behavioural systems [4,7,9]. The brain
structures involved in this response are, in roughly ascending
order (Fig. 1), as follows:
1. The medullary autonomic nuclei (i.e. solitary tract nuclei,

the dorsal motor nucleus of the vagus and the ambiguus
nuclei), which control parasympathetic output directly and
sympathetic activity indirectly, through the intermedio-
lateral cell column in the thoracic spinal cord.

2. The parabrachial nuclei, A5 cell group and the area
postrema, which are located in the brainstem and control
the medullary autonomic nuclei.
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Abstract

On one side, brain dysfunction is a poorly explored complication of sepsis. On the other side, brain
dysfunction may actively contribute to the pathogenesis of sepsis. The current review aimed at
summarizing the current knowledge about the reciprocal interaction between the immune and central
nervous systems during sepsis. The immune-brain cross talk takes part in circumventricular organs
that, being free from blood-brain-barrier, interface between brain and bloodstream, in autonomic nuclei
including the vagus nerve, and finally through the damaged endothelium. Recent observations have
confirmed that sepsis is associated with excessive brain inflammation and neuronal apoptosis which
clinical relevance remains to be explored. In parallel, damage within autonomic nervous and neuro-
endocrine systems may contribute to sepsis induced organ dysfunction.
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3 The midbrain raphe nuclei, which are the source of
serotonergic fibre systems, and the reticular formation.

4 The locus coeruleus, which is both localized in the pons
and the core of the noradrenergic network.

5. The hypothalamic paraventricular and supraoptic nuclei,
which synthesize and release corticotrophin-releasing
factor (CRF) and vasopressin.

6. The amygdala, which is located within the hippocampus
and connected to the limbic system.

In addition to their neuroendocrine functions, CRF and
vasopressin are both neurotransmitters with receptors that
are expressed in the medullary autonomic nuclei and locus

coeruleus [9]. All of these structures are interconnected,
notably the paraventricular nucleus, locus coeruleus and
nuclei of solitary tract, which have reciprocal projections
[9].

The CRF, vasopressin and noradrenergic networks (termed
CRF/VP and LC-NA systems) are coactivated during the
response to stress and modulate each other [7]. They are
also influenced by cerebral facilitatory (serotonergic and
cholinergic networks) and inhibitory (γ-aminobutyric acid and
opioid networks) systems, as well as by peripheral feedback
mechanisms such as circulating inflammatory mediators,
baroreflex afferents (vasopressin and autonomic nuclei),

Figure 1

Main cerebral networks involved in the response to stress. ACTH, adrenocorticotrophic hormone; Amy, amygdala; CRF, corticotrophin-releasing
factor; 5-HT, serotonin (5-hydroxytryptamine); LC, locus coeruleus; MAN, medullary autonomic nuclei; NE, norepinephrine (noradrenaline); NO,
nitric oxide; ParaΣ, parasympathetic system; Σ, sympathetic system; RN, raphe nuclei; VP, vasopressin.
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plasma corticosteroid level (adrenocorticotrophic hormone
[ACTH] and CRF) and plasma osmolality (vasopressin).

There is an additional level of complexity, namely the
interactive cellular organization of the brain, which includes
endothelial cells, glial cells (astrocytes and microglia) and
neurones. For example, astrocytes play a protective role in
regulating local blood flow, transporting energy substrates
from microvessels to neurones, preserving BBB properties,
destroying pathogens, removing debris and promoting tissue
repair [1,10]. However, activated glial cells acquire neurotoxic
properties, notably by releasing nitric oxide (NO) and
glutamate [10,11], in circumstances that include cerebral
trauma, inflammation and infection.

Neuropathology of human septic shock
Neuropathological studies of human septic shock are scant,
most of them being retrospective or performed in few
patients [12,13]. In a recent prospective autopsy study of
23 patients who had died from septic shock, we found
ischaemic lesions in all cases, haemorrhage in 26%,
hypercoagulability syndrome in 9%, microabscesses in 9%,
and multifocal necrotizing leucoencephalopathy in 9%,
which was associated with both local expression and high
circulating levels of proinflammatory cytokines [2]. This
latter finding is of great interest because it shows that the
brain can be damaged through purely inflammatory
processes, as distinct from hypoperfusion or coagulation
disturbances, during septic shock [14]. However, the
incidence and features of brain lesions in the ante mortem
period and in patients surviving septic shock remain to be
assessed.

Immune–brain pathways
The immune system can be thought of as a diffuse sensory
system that signals the presence of micro-organism
constituents to the brain through three main mechanisms
[15]. First are the circumventricular organs, which are
composed of specialized tissue and located at a strategic
position in the midline ventricular system. Because they are
not protected by the BBB they can function as
communicating structures between the brain and
bloodstream. They encompass the pineal body, the
subcommissural organ and the subfornical organ, but
especially the organum vasculosum, the median eminence
and the neurohypohysis; these are, respectively, part of the
hypothalamic and pituitary centres and the area postrema,
which is close to the medullar autonomic nuclei. The vagus
nerve, by sensing peripheral inflammation (presumably
through cytokine receptors on the nerve surface), conveys
immune-related information to the medulla [16] and then
suppresses the inflammatory response at the site of infection
(through nicotinic acetylcholine receptors on monocytes)
[17–19]. The third signalling pathway is via endothelial
activation and leakage, which leads to release or passive
diffusion of inflammatory and neurotoxic mediators.

Blood–brain barrier during infection
Diffuse endothelial activation, also termed panendothelitis, is
considered to be the hallmark of septic shock. Both
lipopolysaccharide (LPS) and proinflammatory cytokines
induce the expression of CD40, vascular adhesion molecule-1
or intercellular adhesion molecule-1, and E-selectin on human
brain microvessel endothelial cells [20–24]. They also cause
transcriptional activation of the gene that encodes cyclo-
oxygenase 2 and stimulation of the IκB-α/nuclear factor-κB
(NF-κB) pathway [25–27]. Although brain endothelial cells
do not express surface CD14, LPS also triggers the mitogen-
activated protein kinase cascade through soluble CD14 [28].
LPS-activated brain endothelial cells exhibit IL-1 and tumour
necrosis factor (TNF)-α receptors [29,30]; produce IL-1β,
TNF-α and IL-6 [31–33]; and exhibit endothelial and
inducible nitric oxide synthase (NOS) [34–37]. These
mediators are able to interact with surrounding brain cells,
relaying into the brain inflammatory response. This endothelial
activation may result in alteration in the BBB [38–41]. Indeed, it
has been shown that the BBB is rendered permeable in
experimental models of septic shock [42–44], an effect that is
attenuated by glial cells, dexamethasone, or NOS inhibition
[42,45,46]. This endothelial activation may also result in
cerebrovascular dysfunction. However, although a number of
studies have assessed cerebral blood flow, endothelial
reactivity and oxygen consumption during sepsis both in animal
and human shock, they have yielded contradictory results,
some showing impairment [47–49] and others not [50–53].

Cerebral immune system in infection
A coherent neuro–immune interaction requires that the brain
can detect inflammatory mediators. Components of the innate
and adaptive immune systems are expressed in the brain
during experimental endotoxin shock [54]. Remarkably, their
expression spreads from circumventricular organs to the
deeper brain areas that control neuroendocrine and
autonomic functions – a ‘migratory’ pattern of brain activation.
Thus, LPS receptor CD14 is expressed sequentially, first in
the circumventricular organs and then in hypothalamic and
medullary autonomic nuclei during the very acute phase of
experimental septic shock [55].

Toll-like receptor (TLR)2, TLR4 and TLR9 have been
detected both in resting and LPS-activated animal or human
glial cells (microglia, astrocytes and oligodendrocytes)
[54,56,57], as may be expected because they are bone
marrow derived monocytes. The issue of whether TLRs are
expressed in neurones remains controversial, Lehnardt and
coworkers [58] having recently shown that neuronal TLR
remained undetectable after in vitro LPS stimulation. TLR4,
which interacts with LPS-bound CD14, is constitutively
expressed in circumventricular organs but also in the
hypothalamus and medulla; in contrast to CD14, however,
there is a downregulation of TLR4 mRNA in the brains of rats
challenged by LPS [59]. There is also a strong and transient
expression of the gene encoding TLR2 in the brains of LPS-
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challenged mice [60]. Microglial cells also express TLR9
mRNA, and its ligand has been found to activate these cells
both in vitro and in animal models [61]. CD14 and TLR both
trigger cellular transcription of proinflammatory molecules
through the NF-κB pathway. Thus, IκB mRNA follows a
CD14 migratory-like transcription pattern in the brain of rats
following intraperitoneal LPS administration [62].

It has been established that LPS stimulation induces NO
synthesis [63,64], and the release of proinflammatory and anti-
inflammatory cytokines and their receptors from neurones,
astrocytes and microglial cells both in vitro [65–68] and in vivo
[31,34–36,69–72]. The coexpression of proinflammatory and
anti-inflammatory cytokines suggests the existence of a highly
organized immune counter-regulation within the brain [73].

Prostaglandins are key mediators in the brain response to
inflammatory stimuli, their role in fever having been extensively
investigated. Thus, following LPS stimulation astrocytes
release significant amount of prostaglandin E [74], whereas
microglia express prostaglandin receptors [75] and express
cyclo-oxygenase 2 [76]. Finally, a number of other mediators
are involved in the cerebral brain response to immune
challenge including, among others, chemokines, macrophage
migrating inhibitory factor, platelet activating factor,
superoxide radicals and carbon monoxide.

Consequences of cerebral immune activation
There is a body of evidence that NO, cytokines and
prostaglandins modulate brain neurotransmission [77–82],
especially the β-adrenergic system, the production and
release of CRF, ACTH and vasopressin, as well as medullary
autonomic centre output [83,84]. Inversely, neurotransmitters
and neurohormones also modulate cerebral expression of
inflammatory mediators [85,86]. These effects have been
described elsewhere [66,87]. The final neuroendocrine and
autonomic response is variable because it depends on a
highly complex and spatiotemporally changing process that
involves both stimulatory and inhibitory factors, which
themselves depend on interactions between glial, endothelial
and neuronal cells. Disturbances in these relationships may
lead to maladaptive responses, as illustrated by a recent
experimental study [88] that showed that heart failure
associated sympathetic hyperactivity was linked to decreased
NO production in the paraventricular nucleus. The opposite
phenomenon may occur in septic shock, which is associated
with reduced sympathetic output [89].

At an intracellular level, various phenomena have been
reported, including activation or inhibition of mitochondrial
respiration [10,90], activation of mitogen-activated protein
kinase and NF-κB pathways [91] and release of cytotoxic
agents such as calcium and reactive oxygen species [92,93],
as well as protective ones such as heat shock proteins [94].
However, although sepsis-related mitochondrial dysfunction
has been extensively assessed in various human organs [95],

it remains to be documented in the human brain, but it is of
course the case that genetic mitochondrial diseases are well
described causes of brain dysfunction in humans.

Clearly, an important aspect of cerebral dysfunction is brain
cell apoptosis, which occurs as a consequence of multiple
factors that are in play during septic shock, including
ischaemia, glial cell activation, TNF-α, IL-1β. interferon-γ and
NO [96–99]. LPS challenge is associated with either glial or
neuronal apoptosis [99,100] and it appears that NO is the
main apoptotic mediator, although the TLR4 pathway may
also be involved [101]. On the other hand, recent
experimental studies have suggested that IL-10 and cyclo-
oxygenase inhibition attenuate LPS-induced apoptosis
[97,102,103]. We recently found apoptotic microglial and
neuronal cells in the hypothalamus and cardiovascular
autonomic centres in the brains of patients who had died
from septic shock [3]. Of note is that, in that study, neuronal
apoptosis was closely correlated with endothelial cell
inducible NOS expression [3].

Encephalopathy, neuroendocrine and
autonomic dysfunction in septic shock
Septic encephalopathy
The prevalence of encephalopathy in severe sepsis varies
from 9% to 71%, depending on the definition, which can be
based on clinical criteria [1,104–106], electroencephalo-
graphic criteria [107,108], or, more recently, on sensory
evoked potentials [109,110]. An important advantage of the
latter technique is that it is not influenced by sedation
[109,110]. The severity of encephalopathy has been found to
correlate with the global severity of illness, as assessed by
Acute Physiology and Chronic Health Evaluation II score or
organ failure scores, and with mortality [104–106]. As
described above, the pathophysiology of encephalopathy is
multifactorial, including the following: cerebral endothelial
dysfunction, with BBB disruption and cerebral blood flow
impairment, fostering translocation of neurotoxic molecules
and brain hypoperfusion/ischaemia, respectively [1]; neuro-
toxic amino acids (such as ammonium, tyrosine, tryptophan
and phenylalanine), whose plasma levels are increased in
sepsis because of muscle proteolysis and reduced hepatic
clearance [1,77,111–114]; and endotoxin and inflammatory
mediators, which alter glial and neuronal metabolism, as was
described previously [1]. Renal and hepatic failure, metabolic
disturbances and neurotoxic drugs may also contribute to the
development of brain dysfunction. Finally, neurone-specific
enolase, a marker of brain injury, may be a predictor of death
in septic shock patients [115].

Neuroendocrine dysfunction and autonomic failure

The endocrine response to sepsis is complex, and in this
review we focus only on the hypothalamic–pituitary–adrenal
axis and on vasopressin. Briefly, disruption of the
hypothalamic–pituitary–adrenal axis is a common feature in
severe sepsis and may be unmasked by a short Synacten
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test, when cortisol level increases by less than 9 µg/dl after
an intravenous bolus of 250 µg corticotrophin [116]. It is now
recognized that, in sepsis, adrenal insufficiency partly
accounts for reduced vascular sensitivity to vasopressors
[117] and an increased risk for death [116]. Moreover, in
septic shock, correcting this disorder by cortisol replacement
therapy improves haemodynamic status and survival [118].

Septic shock may also be associated with a relative
vasopressin deficiency, a concept that is worthy of
clarification. Indeed, it is one rationale for treating septic
shock with vasopressin infusion, the optimal start, duration
and target plasma vasopressin concentration of which remain
unresolved [119–121]. First, deficiency implicitly suggests
that plasma vasopressin levels are abnormally reduced.
Landry and coworkers [122] originally reported significantly
lower plasma vasopressin levels in late septic shock than in
cardiogenic shock (3.1 ± 1.0 versus 22.7 ± 2.2 pg/ml). The
latter observation, together with the demonstration of high
vasopressin levels in experimental early endotoxic shock
[123,124], suggests that circulating vasopressin levels wane
as the course of septic shock progresses. Indeed, this
pattern was confirmed in patients with septic shock [125].

Second, ‘inappropriately low’ means that the observed
plasma vasopressin level does not match the expected value
for a given level of plasma osmolality or a given degree of
hypotension. It is highly difficult to apply such a criterion in
septic shock. For instance, circulating vasopressin levels
were inappropriately low in a third of patients with septic
shock, mainly after the 36 hours from the onset of shock
[125]. Vasopressin levels were thought to be inappropriate
when they were 3.6 pg/ml or less (the upper limit for
normonatraemic and normotensive healthy individuals) and
sodium concentration was 145 mmol/l or more, or systolic
blood pressure was less than 100 mmHg. One may argue
that using the upper limit observed in hypernatraemic or
hypotensive healthy individual or in cardiogenic shock as a
reference would have resulted in a higher rate of
inappropriate vasopressin levels. The latter issue concerns
the limits of natraemia and systolic blood pressure to which
one should refer. In such a life-threatening and complex
condition as septic shock, it is conceivable that the osmo-
and baro-thresholds of vasopressin secretion are respectively
shifted to an upper level of natraemia and a lower level of
systolic blood pressure, simply because vasopressin reserve
must be preserved or vasopressin concentrations are
appropriate for other physiological factors.

Keeping this in mind, it is noteworthy that, in patients with
septic shock and adrenal insufficiency, plasma vasopressin
levels were significantly higher in nonsurvivors [125]. It is
therefore plausible that secretion of vasopressin, which is
known to modulate ACTH release and to be regulated by
circulating cortisol [7], was adapted to adrenal function. In
addition, this observation may also suggest that plasma

vasopressin deficiency is not associated with poorer outcomes.
So, why should plasma vasopressin be normalized?

In an opposing and provocative view, one may argue that
vasopressin secretion should be limited in some patients,
particularly those with adrenal insufficiency. However,
vasopressin infusion, if not beneficial in normalizing vaso-
pressin deficiency, might be useful because of its haemo-
dynamic properties [119–121]. The various mechanisms
underlying inappropriately low circulating vasopressin levels
may include increased vasopressin clearance from plasma,
depleted vasopressin stores after the initial release, impaired
baroreflex or osmoreceptor sensitivity, cytokines, or NO-
induced decreased vasopressin synthesis or release
[126–129]. We found normal vasopressinase activity, empty
vasopressin neurohypophyseal stores on magnetic
resonance imaging [130] and impaired baroreflex activity in
some patients [125]. However, interpretation of baroreflex
sensitivity is difficult because it is directly influenced, through
the medullar V1b receptor, by plasma vasopressin level [131].

Autonomic failure was initially described in endotoxin challenged
animals before it was documented in patients with septic shock,
particularly by using spectral analysis of heart rate variability
[89,132]. Impaired autonomic function is associated with an
increased risk for death from critical illness [133,134].

Conclusion
Septic shock is often complicated by encephalopathy,
neuroendocrine dysfunction and cardiovascular autonomic
failure, all of which worsen patient outcomes. The
mechanisms of these dysfunctions are highly complex and
involve inappropriate immune–brain signalling, which results
in brain cell activation; deleterious production of NO;
dysfunction of intracellular metabolism; and cell death. Areas
of the brain that are responsible for cardiovascular
homeostasis appear to be specifically vulnerable during
sepsis, creating a vicious cycle. The central role played by
NO suggests that inhibition of inducible NOS expression
would be beneficial but this needs to be demonstrated
experimentally, especially because inhibition of endothelial
NOS might worsen brain ischaemia. It may prove difficult to
manipulate the complex and inter-related processes involved.
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