Open Access

Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients: a systematic review and meta-analysis

Critical Care200610:R55

DOI: 10.1186/cc4887

Received: 16 January 2006

Accepted: 11 March 2006

Published: 7 April 2006

Abstract

Introduction

Tracheostomy is one of the more commonly performed procedures in critically ill patients yet the optimal method of performing tracheostomies in this population remains to be established. The aim of this study was to systematically review and quantitatively synthesize all randomized clinical trials (RCTs), comparing elective percutaneous dilatational tracheostomy (PDT) and surgical tracheostomy (ST) in adult critically ill patients with regards to major short and long term outcomes.

Methods

MEDLINE, EMBASE, CINAHL and the Cochrane Controlled Clinical Trials Register databases were searched to identify relevant studies. Additionally, bibliographies and selected conference proceedings were reviewed, and experts in the field and manufacturers of two PDT kits were contacted. Randomized clinical trials comparing any method of elective PDT to ST that included critically ill adults and reported at least one clinically relevant outcome were included. Data extracted included trial characteristics, measures of study validity, and clinically relevant outcomes.

Results

Seventeen RCTs involving 1,212 patients were included. Most PDTs used a multiple dilator technique and were performed in the intensive care unit (ICU). The pooled odds ratio (OR) for wound infection was 0.28 (95% confidence interval (CI), 0.16 to 0.49, p < 0.0005), indicating a significant reduction with PDT compared to ST. Overall, PDT was equivalent to ST for bleeding, major peri-procedural and long-term complications; however, subgroup analysis suggested PDT resulted in a lower incidence of bleeding (OR = 0.29 (95% CI 0.12 to 0.75, p = 0.01)) and death (OR = 0.71 (95% CI 0.50 to 1.0, p = 0.05)) when the STs were performed in the operating theatre.

Conclusion

PDT reduces the overall incidence of wound infection and may further reduce clinical relevant bleeding and mortality when compared with ST performed in the operating theatre. PDT, performed in the ICU, should be considered the procedure of choice for performing elective tracheostomies in critically ill adult patients.

Introduction

Tracheostomy, an ancient surgical procedure originally described in the first century BC [1], is one of the more commonly performed procedures in modern intensive care, and is predicted to become more common as demand for intensive care services increases [2, 3]. While the benefits of early tracheostomy for patients who require extended periods of mechanical ventilation, compared to prolonged translaryngeal intubation, have been recently debated [46], the optimal method of performing tracheostomies in critically ill patients remains unclear.

The traditional method of performing tracheostomies in critically ill patients requires transport from the intensive care unit (ICU) to the operating theatre (OT), where a surgical team performs an open or surgical tracheostomy (ST). This involves a full dissection of the pretracheal tissues and insertion of the tracheostomy tube into the trachea under direct vision [7]. Percutaneous dilatational tracheostomy (PDT) was first described in 1957 [8], and became increasingly popular after the release of a commercially available kit in 1985 [9]. This technique involves the use of blunt dilatation to open the pretracheal tissue for passage of the tracheostomy tube. Proponents of PDT suggest that the limited dissection results in less tissue damage, lowers the risk of bleeding and wound infection, and is able to be performed at the bedside in the ICU, which may overcome the risks associated with transport of critically ill patients to the OT [10].

The proportion of patients receiving PDT and ST varies greatly in different practice settings, with ST being performed exclusively in some ICUs, PDT being performed almost exclusively in others and others using a mixture of both techniques [1114]. Three previous meta-analyses have attempted to resolve which method of performing tracheostomies is superior; however, results from these reviews are limited for several reasons. One included both randomized and non-randomized studies [15]. The other two meta-analyses included only four [16] and five [17] randomized trials, respectively, made no attempt to find unpublished studies, made no assessment of the possible impact of publication bias, nor explicitly assessed the validity of those trials included. Current guidelines would suggest that meta-analyses lacking these features may arrive at unreliable conclusions [18]. As such, the question of whether PDT or ST is superior for critically ill patients remains unanswered.

To address these shortcomings and provide a comprehensive and contemporary overview, we performed a systematic review and meta-analysis to investigate whether, for adult critically ill patients who require an elective tracheostomy, PDT is superior to ST with regards to the incidence of wound infection, bleeding, and overall mortality as well as major peri-operative complications. We also examined whether one technique was associated with improved rates of longer-term complications.

Materials and methods

Search strategy

Randomized clinical trials (RCTs) comparing PDT with ST in critically ill patients were identified using both electronic and manual search strategies supplemented by scanning the bibliographies of all retrieved articles as well as review articles, and reviewing selected conference proceedings (American Thoracic Society (2001 to 2005), Society of Critical Care Medicine (2001 to 2005), European Society of Intensive Care Medicine (2001 to 2005) and American College of Chest Physicians (2002 to 2005)). In addition, we searched for unpublished studies by contacting the manufacturers of two percutaneous tracheostomy kits (Cook® Group Inc, Bloomington, IN, USA) and Smiths Medical (Portex®), London, UK), and by contacting experts in the field. All languages were considered eligible. The electronic literature search was completed on December 31, 2005.

MEDLINE (inception to 2005), EMBASE (inception to 2005), CINAHL (inception to 2005) and the Cochrane Controlled Clinical Trials Register databases (inception to 2005) were searched via OVID. MEDLINE (inception to 2005) was also search using the Pubmed interface. Three comprehensive search themes were combined using the Boolean operator 'AND'. The first theme used highly sensitive RCT filters [19, 20]. The second theme was created using exploded medical subject headings (MeSH) and textword search for 'tracheostomy' or 'tracheotomy'. The third theme, critical illness, was created by using the Boolean search term 'OR' to search for the following terms appearing as both exploded MeSH and text words: 'critical care' or 'critical illness' or 'intensive care' or 'critically ill'.

Study selection

An initial screen of all titles and abstracts was conducted to confirm the report was of a trial comparing methods of performing tracheostomies in critically ill patients. The full text articles were retrieved and assessed to determine if they fulfilled the predetermined eligibility criteria for inclusion. Two authors (MN and SB) independently applied the inclusion criteria to the potentially eligible articles, with disagreements resolved by discussion or by resort to a third reviewer (AD). When data were not reported in sufficient detail to determine a studies' eligibility, validity or outcomes, we attempted to contact the corresponding author by email for clarification. The report of one RCT [21] was translated from Korean into English prior to assessment. To be eligible for inclusion the article had to describe a study that fulfilled all of the following criteria: study design – a RCT; intervention – compared any method of elective PDT to ST; population – included critically ill adults; and outcomes – reported at least one of the measures bleeding, wound infection, mortality, duration of mechanical ventilation or ICU length of stay.

Validity assessment

The validity of the included studies was assessed using a priori defined criteria. Each study was assessed for the adequacy of allocation concealment, blinding of outcome assessment, whether the analysis was conducted on an intention-to-treat basis, whether the outcomes were prospectively defined, and whether there were important differences between the two groups at baseline. When details of the allocation concealment were not specified in the article or could not be clarified by contact with the study authors, it was assessed as absent [22]. Blinding was deemed to be present when there was a description for a method of blinded assessment of any of the primary outcomes for that study. Again, two authors (SB and AD) independently assessed the validity of the studies with disagreement resolved by discussion.

Data abstraction

Data were abstracted onto standardized data collection forms by two authors (SB and AD), independently, with disagreements resolved by discussion. Data were collected regarding patient characteristics, the method of PDT used, the experience of the operators (whether the procedure was performed by a trainee or by an attending/consultant), the location where tracheostomies were performed (ICU or OT), whether the PDTs were performed under bronchoscopic guidance, and the duration of translaryngeal intubation prior to tracheostomy. STs were adjudicated to have been performed in the OT when any of the participants were transferred to the OT to have the procedure performed. Outcome data were collected, including the incidence of bleeding, wound infection, mortality and other major complications of the procedures. When available, data on the duration of mechanical ventilation and duration of ICU stay were recorded. We attempted to include only clinically important outcomes in our analysis. Wound infection was defined variably in the primary RCTs (as shown in Additional file 1), so for our analysis, when possible, only cases that prompted the administration of systemic antibiotics were included as wound infection. Bleeding was defined as bleeding that required an intervention, such as need for blood transfusion or surgical hemostasis, rather than bleeding that resolved spontaneously or with simple pressure. Other major complications were defined as those that were potentially life threatening or required an intervention and included loss of the airway, tube malplacement or pneumothorax. Mortality was defined as all-cause mortality for the longest period of follow-up reported in the study or until hospital discharge. Data were collected on long-term complications when available, including incidence of airway symptoms, delayed closure of fistula, tracheal stenosis, tracheal malacia, and characteristics of the scar.

Quantitative data synthesis

Agreement on the inclusion of studies was assessed with the Kappa statistic. Statistical heterogeneity was assessed using the χ2 and I2 statistics, with an I2 value of >50% indicating at least moderate heterogeneity [23]. When no statistical heterogeneity was evident, dichotomous data from selected RCTs were combined using the Mantel and Haenszel method to produce an estimate of the pooled odds ratio (OR) with 95% confidence intervals (CIs). Continuous outcomes were pooled using standardized mean differences (SMDs). The potential for publication bias was assessed by inspection of funnel plots for asymmetry and an Egger's test [24]. A priori selected subgroups for sensitivity analysis included two study quality factors (allocation concealment and blinding of outcomes), the method used to perform the PDT, the location where the tracheostomy was performed, and use of bronchoscopic guidance to guide the PDT. All statistical analyses were conducted using STATA 8.2 (StataCorp, College Station, TX, USA).

Results

Study selection

Database searches generated a total of 1,482 references. There were 34 full text articles retrieved for review with 17 [21, 2538] RCTs fulfilling all eligibility criteria for inclusion in the systematic review. While 16 of the studies were identified by the electronic search strategy, a single study of a recently completed RCT was identified by contact with an expert [39]. In addition, one study was published in abstract form only; however, the authors were contacted and provided complete details of the study, which enabled a thorough review and abstraction of relevant data[35] Agreement on the inclusion studies was 97% (kappa 0.93, p < 0.0001). The flow of studies and reasons for exclusion are displayed in Figure 1.
https://static-content.springer.com/image/art%3A10.1186%2Fcc4887/MediaObjects/13054_2006_Article_4410_Fig1_HTML.jpg
Figure 1

Quorum flow diagram summarizing trial flow and reasons for exclusion of studies. PDT, percutaneous dilatational tracheostomy; RCT, randomized clinical trial.

Study description

A total of 1,212 participants were randomized in the 17 RCTs. The study characteristics are shown in Table 1. The majority (71%) of PDTs used a multiple dilator technique and 94% were performed in the ICU. A summary of the validity assessment for the 17 RCTs is displayed in Table 2. Most studies had balanced groups at baseline and performed their analysis on an intention-to-treat basis; however, only two RCTs used methods to blind the adjudication of outcomes while only seven RCTs clearly maintained allocation concealment. No study had a loss to follow-up of > 5% for the short-term outcomes; however, when longer term outcomes were reported, losses to follow-up were understandably significant, as displayed in Table 3.
Table 1

Characteristics of randomized clinical trials comparing percutaneous dilatational and surgical tracheostomy in critically ill patients

Study

No. of Participants

Mean age (years)

Male (%)

Population

Method of PDT

Location ST performed

Location PDT performed

ST performed by

PDT performed by

Use of bronchoscopic guidance for PDT

Hazard [30]

46

63.1

54.3

Medical/surgical ICU

Multiple dilator

ICU or OT

ICU

Staff

Trainee

No

Crofts [26]

53

59.3

58.5

Medical/surgical ICU

Multiple dilator

OT

ICU

Trainee

Trainee

No

Friedman [28]

53

54.5

58.5

Medical/surgical ICU

Multiple dilator

OT

ICU

Staff

Trainee

No

Holdgaard [32]

60

60

76.7

Medical/surgical ICU

Multiple dilator

OT

OR

Trainee

Staff

No

Jong Joon [21]

38

61

71

Medical ICU

Multiple dilator

ICU

ICU

Trainee

Trainee

Yes

Gysin [29]

70

55.5

NR

Medical/surgical ICU

Multiple dilator

ICU or OT

ICU or OT

Staff

Staff

Yes

Porter [34]

24

44.8

79.2

Surgical ICU

Multiple dilator

ICU

ICU

Trainee

Trainee

Yes

Raine [35]

100

43.1

66

Medical/surgical ICU

Forceps

ICU

ICU

Staff

Staff

No

Heikkinen [31]

57

64.6

70.2

Medical/surgical ICU

Forceps

ICU

ICU

Staff

Staff

No

Freeman [27]

80

63.4

46.3

Medical/surgical ICU

Multiple dilator

OT

ICU

NR

NR

Yes

Massick [40]

100

NR

NR

Medical/surgical ICU

Multiple dilator

ICU

ICU

Trainee

Trainee

Yes

Melloni [33]

50

56.5

62

Medical/surgical ICU

Multiple dilator

ICU or OT

ICU

Staff

Staff

Yes

Sustic [36]

16

36

81.3

Neurosurgical ICU

Forceps

OT

ICU

Staff

Staff

No

Wu [38]

83

68.8

78.3

Medical/surgical ICU

Multiple dilator

OT

ICU

Trainee

Staff

Yes

Antonelli [25]

139

63.5

59.7

Medical/surgical ICU

Translaryngeal

OT

ICU

Staff

Staff

No

Tabaee [37]

43

60.1

39.5

Medical/surgical ICU

Single dilator

ICU

ICU

Trainee

Trainee

Yes

Silvester [39]

200

60.7

68.5

Medical/surgical ICU

Multiple dilator

ICU

ICU

Trainee

Trainee

Yes

ICU, intensive care unit; NR, not reported; OT, operating theatre; PDT, percutaneous dilatational tracheostomy; ST, surgical tracheostomy.

Table 2

Summary of validity assessments for RCTs comparing percutaneous dilatational and surgical tracheostomy in critically ill patients

Study

Allocation concealment

Blinding

Intention-to-treat analysis

Predefined outcomes

Baseline Imbalance

Hazard [30]

No

No

Yes

Yes

No

Crofts [26]

No

No

Yes

Yes

No

Friedman [28]

No

No

Yes

Yes

No

Holdgaard [32]

Yes

No

Yes

Yes

No

Jong Joon [21]

No

No

Yes

No

No

Gysin [29]

No

Yes

Yes

Yes

No

Porter [34]

Yes

No

Yes

Yes

No

Raine [35]

Yes

No

Yes

No

Yes

Heikkinen [31]

No

No

Yes

No

No

Freeman [27]

Yes

No

Yes

Yes

No

Massick [40]

Yes

No

Yes

Yes

No

Melloni [33]

No

No

Yes

Yes

No

Sustic [36]

No

No

Yes

Yes

No

Wu [38]

No

No

No

Yes

No

Antonelli [25]

Yes

No

Yes

Yes

No

Tabaee [37]

No

No

Yes

Yes

No

Silvester [39]

Yes

Yes

Yes

Yes

No

ICU, intensive care unit; NR, not reported; OT, operating theatre; PDT, percutaneous dilatational tracheostomy; ST, surgical tracheostomy.

Table 3

Summary of long-term complications comparing percutaneous dilatational and surgical tracheostomy in critically ill patients

Study

Proportion available for long-term follow-up (%)

Duration of follow-up

Reported complications

 

ST

PDT

 

Complication

ST (%)

PDT (%)

Hazard [30]

8/24 (33)

11/22 (50)

1.5–3 months

Delayed closure

3 (38)

0 (0)

    

Tracheal stenosis

5 (63)

2 (18)

    

Cosmetic deformity

2 (25)

1 (9)

Gysin [29]

20/35 (57)

10/35 (29)

3 months

Delayed closure

2 (10)

1 (10)

    

Tracheal cartilage lesion

1 (5)

0 (0)

    

Unesthetic scar

8 (40)

2 (20)

Raine [35]

26/50 (52)

24/50 (48)

4 months

Tracheal stenosis

11 (46)

7 (27)

    

Scar requiring surgical revision

5 (21)

2 (8)

Heikkinen [31]

11/56 (20)

11/56 (20)

18 months

Delayed closure

1

0

    

Airway symptomsa

2

2

    

Dysphagia

1

0

Wu [38]

12/42 (29)

15/41 (37)

2–4 years

Tracheal malacia

1 (8)

0 (0)

Melloni [33]

13/25 (52)

15/25 (60)

6 months

Tracheal malacia

0 (0)

1 (7)

    

Tracheal stenosis

0 (0)

1 (7)

Antonelli [25]

13/72 (18)

18/67 (27)

12 months

Delayed closure

7 (54)

7 (39)

    

Airway symptomsa

6 (46)

5 (28)

    

Tracheal stenosis

2 (11)

1 (6)

    

Need for stomaplasty

3 (16)

1 (6)

Silvester [39]

42/100 (42)

29/100 (29)

20 months

Airway symptomsa

10 (24)

12 (41)

    

Stridor

2 (5)

0 (0)

    

Vocal cord paralysis

1 (2)

0 (0)

    

Unesthetic scar

2 (5)

0 (0)

aAirway symptoms included hoarseness, feeling of a lump in the throat, cough, dyspnea, or subjective phonetic or respiratory problems. PDT, percutaneous dilatational tracheostomy; ST, surgical tracheostomy.

Evidence synthesis

Wound infection

Clinically important wound infection was diagnosed in 6.6% (n = 57/870) of patients based on data from 11 RCTs [25, 26, 2830, 32, 33, 36, 3840] (Figure 2). There was a significant reduction in the OR for wound infection when the tracheostomy was performed using the PDT compared with the ST technique (OR = 0.28; 95% CI, 0.16 to 0.49, p < 0.0005). There was no evidence of statistical heterogeneity across studies (χ2 p = 0.43, I2 = 1.0%) or evidence of bias on inspection of the funnel plot (Additional file 2) or with Eggers test (p = 0.18).
https://static-content.springer.com/image/art%3A10.1186%2Fcc4887/MediaObjects/13054_2006_Article_4410_Fig2_HTML.jpg
Figure 2

Forest plot showing the effect of percutaneous dilatational tracheostomy (PDT) compared to surgical tracheostomy (ST) on the incidence of wound infection.

Bleeding

The overall incidence of clinically relevant bleeding was 5.7% (n = 49/861) based on data available from 10 RCTs [25, 27, 28, 3032, 3740] (Figure 3). There was no significant difference in incidence when comparing PDT to ST (OR = 0.80; 95% CI, 0.45 to 1.41, p = 0.35). There was no evidence of significant statistical heterogeneity across studies (χ2 p = 0.35, I2 = 9.6%) or evidence of bias on inspection of the funnel plot (Additional file 3) or with Egger's test (p = 0.14).
https://static-content.springer.com/image/art%3A10.1186%2Fcc4887/MediaObjects/13054_2006_Article_4410_Fig3_HTML.jpg
Figure 3

Forest plot showing the effect of percutaneous dilatational tracheostomy (PDT) compared to surgical tracheostomy (ST) on the incidence of significant bleeding.

Mortality

The overall mortality rate was 37% (n = 339/914) based upon data available from 12 RCTs [2530, 3335, 38, 39]. There was no statistically significant difference in mortality for PDT compared with ST (OR = 0.79; 95% CI, 0.59 to 1.07, p = 0.13) (Figure 4). There was no evidence of statistical heterogeneity across studies (χ2 p = 0.58, I2 = 0%) nor evidence of bias by either funnel plot asymmetry (Additional file 4) or Egger's test (p = 0.56).
https://static-content.springer.com/image/art%3A10.1186%2Fcc4887/MediaObjects/13054_2006_Article_4410_Fig4_HTML.jpg
Figure 4

Forest plot showing the effect of percutaneous dilatational tracheostomy (PDT) compared to surgical tracheostomy (ST) on mortality.

Other short-term outcomes

Other major complications occurred in 2.6% (n = 15/574) of patients based on data available from 8 RCTs [26, 28, 30, 32, 34, 37, 39, 40]. There was no significant difference in the incidence of these major complications between those randomized to PDT or ST (OR = 1.3; 95% CI, 0.50 to 3.42, p = 0.59) (Additional file 5). There was no evidence of statistical heterogeneity across studies (χ2 p = 0.95, I2 = 0%).

The duration of translaryngeal intubation prior to tracheostomy was reported in 15 RCTs [21, 2531, 3339]. There was no difference in the duration of translaryngeal intubation prior to tracheostomy for patients receiving PDT as opposed to ST (Additional file 6). The pooled estimate of the SMD was -0.08 days (95% CI, -0.28 to 0.04, p = 0.19). There was no evidence of significant statistical heterogeneity across studies (χ2 p = 0.30, I2 = 13.4%). The total duration of mechanical ventilation and total ICU length of stay were not sufficiently reported to allow pooling of these results.

Effect of study quality on major outcomes

Only two RCTs attempted to perform blinding for the adjudication of the presence of wound infection. Therefore, the presence of methods to maintain allocation concealment was the only study quality factor used to assess for influence on the pooled effect estimate. The pooled ORs for wound infection, bleeding and mortality from RCTs where allocation concealment was maintained were not significantly different from the ORs from the RCTs when allocation concealment was not maintained. The results of these analyses are further detailed in Table 4.
Table 4

Sensitivity analysis for primary outcomes comparing percutaneous dilatational and surgical tracheostomy in critically ill patients

Outcome

Subgroup

No. of studies

Estimate of OR

95% CI

Test for between subgroup heterogeneity

Infection

Allocation concealment

   

P = 0.65

 

Yes

4

0.33

0.14–0.77

 
 

No

7

0.24

0.11–0.53

 
 

Method of PDT

   

P = 0.62

 

Multiple dilator

9

0.24

0.13–0.47

 
 

Forceps

1

0.15

0.01–3.74

 
 

Translaryngeal

1

0.55

0.15–2.1

 
 

ST performed

   

P = 0.70

 

ICU

2

0.49

0.12–1.99

 
 

OT

9

0.25

0.13–0.47

 
 

Use of Bronchoscope for PDT

   

P = 0.28

 

Yes

5

0.40

0.18–0.89

 
 

No

6

0.20

0.09–0.46

 

Bleeding

Allocation concealment

   

P = 0.67

 

Yes

5

0.85

0.46–1.41

 
 

No

5

0.71

0.26–1.94

 
 

Method of PDT

   

P = 0.33

 

Multiple dilator

7

0.96

0.51–1.83

 
 

Forceps

1

1.7

0.15–20.17

 
 

Translaryngeal

1

0.08

0.004–1.37

 
 

Single dilator

1

1.5

0.06–39.24

 
 

ST performed

   

P = 0.009

 

ICU

4

2.01

0.86–4.69

 
 

OT

6

0.29

0.12–0.75

 
 

Use of bronchoscope for PDT

   

P = 0.08

 

Yes

5

1.36

0.65–2.84

 
 

No

5

0.34

0.12–0.92

 

Mortality

Allocation concealment

   

P = 0.86

 

Yes

5

0.81

0.54–1.22

 
 

No

7

0.77

0.50–1.19

 
 

Method of PDT

   

P = 0.94

 

Multiple dilator

9

0.80

0.57–1.11

 
 

Forceps

2

0.63

0.16–2.45

 
 

Translaryngeal

1

0.84

0.40–1.79

 
 

ST performed

   

P = 0.2

 

ICU

3

1.09

0.61–1.97

 
 

OT

9

0.79

0.50–1.00

 
 

Use of bronchoscope for PDT

   

P = 0.52

 

Yes

6

0.86

0.58–1.28

 
 

No

6

0.71

0.45–1.12

 

ICU, intensive care unit; OT, operating theatre; PDT, percutaneous dilatational tracheostomy; ST, surgical tracheostomy.

Subgroup analysis

The studies in which the ST was performed in the OT were pooled separately from those where ST was performed in the ICU. There was a significant reduction in the incidence of bleeding with the PDT technique compared to ST, when the STs were performed in the OT (OR = 0.29; 95% CI, 0.12 to 0.75, p = 0.01). Interestingly, there was a significant reduction in mortality with the PDT technique, compared to ST, when ST was performed in the OT (OR = 0.71; 95% CI, 0.50 to 1.0, p = 0.05). There was a trend toward a shorter duration of translaryngeal intubation prior to tracheostomy with PDT compared with ST, when the ST were performed in the OT (SMD = -0.15; 95% CI, -0.31 to 0.02, p = 0.08). Details of the subgroup analyses are shown in Table 4. The method of PDT used and use of the bronchoscope to guide the placement of the PDT did not significantly affect the pooled effect estimates for wound infection, bleeding or mortality.

Long-term outcomes

Long-term complications for either tracheostomy technique were reported in eight RCTs and are presented in Table 3[25, 2931, 33, 35, 38, 39]. Delayed closure of the stoma, airway symptoms, tracheal stenosis and aesthetics of the scar were the most frequently reported complications; however, due to low rates of long-term follow-up, it is difficult to draw definitive inferences from these studies.

Discussion

This systematic review and meta-analysis has demonstrated that the technique of PDT has a number of important advantages over performing a ST in critically ill patients who require an elective tracheostomy. First, PDT was associated with a reduction in the incidence of clinically important wound infections compared with traditional ST. Secondly, and importantly, there was no evidence overall that PDT resulted in an increased incidence of clinically significant bleeding, major peri-procedural or long term complications. Finally, results of subgroup analysis suggested that PDT was superior to ST when the latter was performed in the OT; specifically, PDT was associated with a reduction in bleeding and overall mortality and a suggestion of decreased duration of translaryngeal intubation prior to tracheostomy.

It is not surprising that a reduced incidence of wound infection was found with the PDT technique. One of the reasons that minimally invasive surgical techniques have become more pervasive in many areas of surgery is the reduction in the rates of surgical site infections [41]. This may be due to minimization of the local tissue damage with a dilatational technique, or may in part be due to a relative preservation of immune functions when minimally invasive techniques are used when compared to an open technique [42].

While there was no statistically significant reduction in mortality with either technique, a possible trend towards lower mortality with use of PDT warrants further discussion. One plausible explanation for this observation could relate to the reduced incidence of infection in those receiving PDT. One study reported the death of a patient who had a ST that could be directly attributable to a local wound infection [28]. The ability to perform the PDT in the ICU without exposing patients to the risks of transport could contribute as well [43, 44]. This contention would be supported by the reduction in mortality with PDT when compared to ST performed in the OT. However, this finding is inconclusive and before a change in clinical practice could be recommended, this would need confirmation in a larger, adequately powered multi-center randomized clinical trial.

While subgroup analyses require cautious interpretation in general, the subgroup analysis in this systematic review provides some supportive evidence for the advantages of PDT over ST, in particular when the STs were performed in the OT. One considerable advantage of PDT is the relative safety and convenience of performing the procedure at the bedside in the ICU, which obviates the need to transport a critically ill patient. The transport of critically ill patients is often logistically difficult and exposes the patient to increased likelihood for adverse events and risk to safety [4346]. The results of our analysis would support the assertion that the elective transport of critically ill patients to the OT for ST may pose undue and increased risk of complications and death.

Additionally, the suggestion of a reduction in the duration of translaryngeal intubation prior to the procedure when comparing PDT with ST performed in the OT may have several important clinical implications. This shorter waiting period prior to performing the PDT may be due to the ease of organizing the PDT at the bedside, specifically forgoing the need for a surgical consultation and the scheduling of time in often busy OTs. Only two studies [28, 39] have examined the time taken from the decision to perform a tracheostomy to the procedure being performed. Both found a significantly shorter time when the tracheostomies were performed using the PDT method. This may have additional implications for critically ill patients, including decreased duration of sedation, earlier weaning from mechanical ventilation and shorter overall length of stay in ICU [4, 4749].

While long-term complications appear uncommon, the incomplete follow-up and lack of consistent definitions of outcome measurements in the available RCTs make conclusions difficult to draw with certainty. Non-randomized studies that have examined this issue have found that clinically relevant tracheal stenosis was uncommon in PDT when performed by experienced operators in a long-term study of 326 patients [50]. This experience is not universal [51, 52], and further investigation to determine how the method and timing of tracheostomy affects long-term outcomes is warranted.

Several clinical trials have compared the various methods of performing PDT, without any method being shown to be conclusively superior [5356]. As the majority of studies included in this review used the multiple dilator technique, it is not surprising the results failed to demonstrate any particular benefit from one specific technique of PDT. While it has been suggested that the use of a bronchoscope to guide the operators performing the PDT makes the procedure safer [57], this was not supported by results of our analysis.

There are a number of potential limitations of our review that warrant discussion. Firstly, when considering the above findings, it is important to remember that several groups of patients were excluded from these RCTs, therefore limiting the generalizability of the results of this meta-analysis to all adult critically ill populations. Critically ill patients requiring emergency tracheostomy or with evidence or suspicion of difficult anatomy, prior airway problems, coagulopathies and previous tracheostomy were generally excluded. Thus, ST may still be indicated for selected patients, despite the continuing broader indications for use of PDT [58]. Secondly, while the role of the experience of the operators performing the procedures was presented in Table 1, the effect that the experience of the operators had on the outcomes could not be formally quantitatively assessed in this analysis. Thirdly, there was considerable heterogeneity in the definitions used across studies for the primary outcomes, in particular wound infection and bleeding. We have attempted to compensate for this by only reporting those episodes of wound infection, bleeding or other complications with obvious clinical relevance, requiring an intervention or that resulted in an alteration to patient management. Fourthly, the validity of our conclusions is, in part, dependent upon the validity of the primary RCTs included. Clearly, the practice of blinding is difficult to perform in surgical trials and it may not be possible to completely blind the adjudication of short-term outcomes. One method to partly address this problem is by setting a priori definitions for primary outcomes, as was done in some of the RCTs included in this review. In contrast, study design to maintain allocation concealment was conducted or reported in less than half of the reviewed RCTs. Interestingly, however, those RCTs that reported allocation concealment produced results similar to the overall pooled effect estimates. This may suggest that the conclusions of this meta-analysis are relatively robust to the influence of selected study quality factors. Finally, while there was no evidence of potential bias by inspection of the funnel plots, making significant publication bias unlikely, it is possible that studies were not identified for this review that could have had an impact on the pooled effect estimates.

Several important questions remain to be addressed regarding the use of tracheostomies in critically ill patients. While there is divided opinion as to the optimal timing of tracheostomy, there is as yet little definitive evidence to guide clinicians [4]. Similarly, there is a paucity of definitive evidence demonstrating that one technique of PDT is clearly superior to any other. Finally, the feasibility of determining whether any technique of performing a tracheostomy in critically ill patients is superior with regards to long term outcomes must be questionable given the difficulties in obtaining a large enough cohort and adequate follow up to address this issue.

Conclusion

We have demonstrated that use of PDT is associated with a reduced incidence of wound infection compared to ST in critically ill patients. PDT may yield an overall decreased risk of death when compared with ST. While PDT appears equivalent to ST for the overall incidence of clinically relevant bleeding, major peri-procedural and long term complications, subgroup analysis has revealed that PDT was superior to ST when the ST was performed in the OT. These results indicate that PDT, performed electively in the ICU, should be the method of choice for performing tracheostomies in critically ill adult patients.

Key messages

  • PDT is associated with a significantly reduced odds of wound infection compared to ST in critically ill patients.

  • There was no evidence that PDT was associated with an overall increase in the rate of bleeding, other major complications or long-term complications, compared to ST.

  • When compared to ST performed in the operating theatres, PDT is associated with a reduced incidence of bleeding, mortality and a trend towards shorter duration of translaryngeal intubation prior to the tracheostomy being performed.

  • The PDT technique, performed in the ICU, should be considered the technique of choice for critically ill patients who require a tracheostomy.

Abbreviations

CI: 

= confidence interval

ICU: 

= intensive care unit

OR: 

= odds ratio

OT: 

= operating theatre

PDT: 

= percutaneous dilatational tracheostomy

RCT: 

= randomized clinical trial

SMD: 

= standardized mean difference

ST: 

= surgical tracheostomy.

Declarations

Acknowledgements

SMB is supported by an Alberta Heritage Foundation for Medical Research Clinical Fellowship and a Royal College and Physicians and Surgeons of Canada Detweiler Traveling Fellowship. The Authors gratefully acknowledge the assistance of Cho Ja Kim for translation services and all authors of the RCTs who provided additional information regarding their trials. We would like to thank Dr Clare Farrell for her assistance providing critical revisions of the manuscript.

Authors’ Affiliations

(1)
Intensive Care Unit, Royal North Shore Hospital
(2)
Department of Intensive Care Medicine, Austin Hospital
(3)
Intensive Care Unit, Nepean Hospital

References

  1. Walts PA, Murthy SC, DeCamp MM: Techniques of surgical tracheostomy. Clin Chest Med 2003, 24: 413-422. 10.1016/S0272-5231(03)00049-2View ArticlePubMedGoogle Scholar
  2. Cox CE, Carson SS, Holmes GM, Howard A, Carey TS: Increase in tracheostomy for prolonged mechanical ventilation in North Carolina, 1993–2002. Crit Care Med 2004, 32: 2219-2226.PubMedGoogle Scholar
  3. Needham DM, Bronskill SE, Calinawan JR, Sibbald WJ, Pronovost PJ, Laupacis A: Projected incidence of mechanical ventilation in Ontario to 2026: Preparing for the aging baby boomers. Crit Care Med 2005, 33: 574-579. 10.1097/01.CCM.0000155992.21174.31View ArticlePubMedGoogle Scholar
  4. Griffiths J, Barber VS, Morgan L, Young JD: Systematic review and meta-analysis of studies of the timing of tracheostomy in adult patients undergoing artificial ventilation. BMJ 2005, 330: 1243. 10.1136/bmj.38467.485671.E0PubMed CentralView ArticlePubMedGoogle Scholar
  5. Freeman BD, Borecki IB, Coopersmith CM, Buchman TG: Relationship between tracheostomy timing and duration of mechanical ventilation in critically ill patients. Crit Care Med 2005, 33: 2513-2520. 10.1097/01.CCM.0000186369.91799.44View ArticlePubMedGoogle Scholar
  6. Nieszkowska A, Combes A, Luyt CE, Ksibi H, Trouillet JL, Gibert C, Chastre J: Impact of tracheotomy on sedative administration, sedation level, and comfort of mechanically ventilated intensive care unit patients. Crit Care Med 2005, 33: 2527-2533. 10.1097/01.CCM.0000186898.58709.AAView ArticlePubMedGoogle Scholar
  7. McWhorter AJ: Tracheotomy: timing and techniques. Curr Opin Otolaryngol Head Neck Surg 2003, 11: 473-479.View ArticlePubMedGoogle Scholar
  8. Shelden C, Pudenz R: Percutaneous tracheotomy. J Am Med Assoc 1957, 165: 2068-2070.View ArticlePubMedGoogle Scholar
  9. Ciaglia P, Firsching R, Syniec C: Elective percutaneous dilatational tracheostomy. A new simple bedside procedure; preliminary report. Chest 1985, 87: 715-719.View ArticlePubMedGoogle Scholar
  10. Al-Ansari MA, Hijazi MH: Clinical review: Percutaneous dilatational tracheostomy. Crit Care 2005, 10: 202. 10.1186/cc3900PubMed CentralView ArticleGoogle Scholar
  11. Blot F, Melot C: Indications, timing, and techniques of tracheostomy in 152 French ICUs. Chest 2005, 127: 1347-1352. 10.1378/chest.127.4.1347View ArticlePubMedGoogle Scholar
  12. Fikkers BG, Fransen GA, van der Hoeven JG, Briede IS, van den Hoogen FJ: Tracheostomy for long-term ventilated patients: a postal survey of ICU practice in The Netherlands. Intensive Care Med 2003, 29: 1390-1393. 10.1007/s00134-003-1824-xView ArticlePubMedGoogle Scholar
  13. Fischler L, Erhart S, Kleger GR, Frutiger A: Prevalence of tracheostomy in ICU patients. A nation-wide survey in Switzerland. Intensive Care Med 2000, 26: 1428-1433. 10.1007/s001340000634View ArticlePubMedGoogle Scholar
  14. Krishnan K, Elliot SC, Mallick A: The current practice of tracheostomy in the United Kingdom: a postal survey. Anaesthesia 2005, 60: 360-364. 10.1111/j.1365-2044.2004.04106.xView ArticlePubMedGoogle Scholar
  15. Dulguerov P, Gysin C, Perneger TV, Chevrolet JC: Percutaneous or surgical tracheostomy: a meta-analysis. Crit Care Med 1999, 27: 1617-1625. 10.1097/00003246-199908000-00041View ArticlePubMedGoogle Scholar
  16. Cheng E, Fee WE Jr: Dilatational versus standard tracheostomy: a meta-analysis. Ann Otol Rhinol Laryngol 2000, 109: 803-807.View ArticlePubMedGoogle Scholar
  17. Freeman BD, Isabella K, Lin N, Buchman TG: A meta-analysis of prospective trials comparing percutaneous and surgical tracheostomy in critically ill patients. Chest 2000, 118: 1412-1418. 10.1378/chest.118.5.1412View ArticlePubMedGoogle Scholar
  18. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF: Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 1999, 354: 1896-1900. 10.1016/S0140-6736(99)04149-5View ArticlePubMedGoogle Scholar
  19. Haynes RB, Wilczynski N, McKibbon KA, Walker CJ, Sinclair JC: Developing optimal search strategies for detecting clinically sound studies in MEDLINE. J Am Med Inform Assoc 1994, 1: 447-458.PubMed CentralView ArticlePubMedGoogle Scholar
  20. Dickersin K, Scherer R, Lefebvre C: Identifying relevant studies for systematic reviews. BMJ 1994, 309: 1286-1291.PubMed CentralView ArticlePubMedGoogle Scholar
  21. Jong Joon A, Koh Y, Jae Yong C, Ki Man L, Park W, Hong SB, Tae Sun S, Sang Do L, Woo Sung K, Kim DS, et al.: Comparison of clinical efficacy between percutaneous dilatational tracheostomy and surgical tracheostomy. Tuberculosis Respiratory Dis 1998, 45: 1277-1283.Google Scholar
  22. Schulz KF, Chalmers I, Hayes RJ, Altman DG: Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995, 273: 408-412. 10.1001/jama.273.5.408View ArticlePubMedGoogle Scholar
  23. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2003, 327: 557-560. 10.1136/bmj.327.7414.557PubMed CentralView ArticlePubMedGoogle Scholar
  24. Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315: 629-634.PubMed CentralView ArticlePubMedGoogle Scholar
  25. Antonelli M, Michetti V, Di Palma A, Conti G, Pennisi MA, Arcangeli A, Montini L, Bocci MG, Bello G, Almadori G, et al.: Percutaneous translaryngeal versus surgical tracheostomy: A randomized trial with 1-yr double-blind follow-up. Crit Care Med 2005, 33: 1015-1020. 10.1097/01.CCM.0000163401.77581.86View ArticlePubMedGoogle Scholar
  26. Crofts SL, Alzeer A, McGuire GP, Wong DT, Charles D: A comparison of percutaneous and operative tracheostomies in intensive care patients. Can J Anaesth 1995, 42: 775-779.View ArticlePubMedGoogle Scholar
  27. Freeman BD, Isabella K, Cobb JP, Boyle WA 3rd, Schmieg RE Jr, Kolleff MH, Lin N, Saak T, Thompson EC, Buchman TG: A prospective, randomized study comparing percutaneous with surgical tracheostomy in critically ill patients. Crit Care Med 2001, 29: 926-930. 10.1097/00003246-200105000-00002View ArticlePubMedGoogle Scholar
  28. Friedman Y, Fildes J, Mizock B, Samuel J, Patel S, Appavu S, Roberts R: Comparison of percutaneous and surgical tracheostomies. Chest 1996, 110: 480-485.View ArticlePubMedGoogle Scholar
  29. Gysin C, Dulguerov P, Guyot JP, Perneger TV, Abajo B, Chevrolet JC: Percutaneous versus surgical tracheostomy: a double-blind randomized trial. Ann Surg 1999, 230: 708-714. 10.1097/00000658-199911000-00014PubMed CentralView ArticlePubMedGoogle Scholar
  30. Hazard P, Jones C, Benitone J: Comparative clinical trial of standard operative tracheostomy with percutaneous tracheostomy. Crit Care Med 1991, 19: 1018-1024.View ArticlePubMedGoogle Scholar
  31. Heikkinen M, Aarnio P, Hannukainen J: Percutaneous dilational tracheostomy or conventional surgical tracheostomy? Crit Care Med 2000, 28: 1399-1402. 10.1097/00003246-200005000-00023View ArticlePubMedGoogle Scholar
  32. Holdgaard HO, Pedersen J, Jensen RH, Outzen KE, Midtgaard T, Johansen LV, Moller J, Paaske PB: Percutaneous dilatational tracheostomy versus conventional surgical tracheostomy. A clinical randomised study. Acta Anaesthesiologica Scandinavica 1998, 42: 545-550.View ArticlePubMedGoogle Scholar
  33. Melloni G, Muttini S, Gallioli G, Carretta A, Cozzi S, Gemma M, Zannini P: Surgical tracheostomy versus percutaneous dilatational tracheostomy. A prospective-randomized study with long-term follow-up. J Cardiovasc Surg 2002,43(Torino):113-121.Google Scholar
  34. Porter JM, Ivatury RR: Preferred route of tracheostomy--percutaneous versus open at the bedside: a randomized, prospective study in the surgical intensive care unit. Am Surg 1999, 65: 142-146.PubMedGoogle Scholar
  35. Raine R, Michell WL, Ruttmann TG, Bloch MB, Thorp M, Gough AM: Late outcome after guide-wire forceps percutaneous tracheostomy – a prospective, randomised comparison with open surgical tracheostomy [abstract]. Br J Anaesth 1999,82(Suppl 1):168.Google Scholar
  36. Sustic A, Krstulovic B, Eskinja N, Zelic M, Ledic D, Turina D: Surgical tracheostomy versus percutaneous dilational tracheostomy in patients with anterior cervical spine fixation: preliminary report. Spine 2002, 27: 1942-1945. 10.1097/00007632-200209010-00026View ArticlePubMedGoogle Scholar
  37. Tabaee A, Geng E, Lin J, Kakoullis S, McDonald B, Rodriguez H, Chong D: Impact of neck length on the safety of percutaneous and surgical tracheotomy: a prospective, randomized study. Laryngoscope 2005, 115: 1685-1690. 10.1097/01.MLG.0000175539.25182.2AView ArticlePubMedGoogle Scholar
  38. Wu JJ, Huang MS, Tang GJ, Shih SC, Yang CC, Kao WF, Huang MH, Lee CH: Percutaneous dilatational tracheostomy versus open tracheostomy – a prospective, randomized, controlled trial. J Chin Med Assoc 2003, 66: 467-473.PubMedGoogle Scholar
  39. Silvester W, Goldsmith D, Uchino S, Bellomo R, Knight S, Seevanayagam S, Brazzale D, McMahon M, Buckmaster J, Hart G, et al.: Percutaneous versus surgical tracheostomy: a randomised controlled study with long-term follow-up. Crit Care Med, in press.
  40. Massick DD, Yao S, Powell DM, Griesen D, Hobgood T, Allen JN, Schuller DE: Bedside tracheostomy in the intensive care unit: a prospective randomized trial comparing open surgical tracheostomy with endoscopically guided percutaneous dilational tracheotomy. Laryngoscope 2001, 111: 494-500. 10.1097/00005537-200103000-00021View ArticlePubMedGoogle Scholar
  41. Targarona EM, Balague C, Knook MM, Trias M: Laparoscopic surgery and surgical infection. Br J Surg 2000, 87: 536-544. 10.1046/j.1365-2168.2000.01429.xView ArticlePubMedGoogle Scholar
  42. Iwanaka T, Arkovitz MS, Arya G, Ziegler MM: Evaluation of operative stress and peritoneal macrophage function in minimally invasive operations. J Am Coll Surg 1997, 184: 357-363.PubMedGoogle Scholar
  43. Warren J, Fromm RE Jr, Orr RA, Rotello LC, Horst HM: Guidelines for the inter- and intrahospital transport of critically ill patients. Crit Care Med 2004, 32: 256-262. 10.1097/01.CCM.0000104917.39204.0AView ArticlePubMedGoogle Scholar
  44. Waydhas C: Intrahospital transport of critically ill patients. Crit Care 1999, 3: R83-89. 10.1186/cc362PubMed CentralView ArticlePubMedGoogle Scholar
  45. Beckmann U, Gillies DM, Berenholtz SM, Wu AW, Pronovost P: Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Australian Incident Monitoring Study in Intensive Care. Intensive Care Med 2004, 30: 1579-1585. 10.1007/s00134-004-2177-9View ArticlePubMedGoogle Scholar
  46. Lovell MA, Mudaliar MY, Klineberg PL: Intrahospital transport of critically ill patients: complications and difficulties. Anaesth Intensive Care 2001, 29: 400-405.PubMedGoogle Scholar
  47. Arabi Y, Haddad S, Shirawi N, Al Shimemeri A: Early tracheostomy in intensive care trauma patients improves resource utilization: a cohort study and literature review. Crit Care 2004, 8: R347-352. 10.1186/cc2924PubMed CentralView ArticlePubMedGoogle Scholar
  48. Rumbak MJ, Newton M, Truncale T, Schwartz SW, Adams JW, Hazard PB: A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med 2004, 32: 1689-1694. 10.1097/01.CCM.0000134835.05161.B6View ArticlePubMedGoogle Scholar
  49. Shirawi N, Arabi Y: Bench-to-bedside review: Early tracheostomy in critically ill trauma patients. Crit Care 2005, 10: 201. 10.1186/cc3828PubMed CentralView ArticleGoogle Scholar
  50. Walz MK, Peitgen K, Thurauf N, Trost HA, Wolfhard U, Sander A, Ahmadi C, Eigler FW: Percutaneous dilatational tracheostomy – early results and long-term outcome of 326 critically ill patients. Intensive Care Med 1998, 24: 685-690. 10.1007/s001340050645View ArticlePubMedGoogle Scholar
  51. Dollner R, Verch M, Schweiger P, Deluigi C, Graf B, Wallner F: Laryngotracheoscopic findings in long-term follow-up after Griggs tracheostomy. Chest 2002, 122: 206-212. 10.1378/chest.122.1.206View ArticlePubMedGoogle Scholar
  52. Norwood S, Vallina VL, Short K, Saigusa M, Fernandez LG, McLarty JW: Incidence of tracheal stenosis and other late complications after percutaneous tracheostomy. Ann Surg 2000, 232: 233-241. 10.1097/00000658-200008000-00014PubMed CentralView ArticlePubMedGoogle Scholar
  53. Nates NL, Cooper DJ, Myles PS, Scheinkestel CD, Tuxen DV: Percutaneous tracheostomy in critically ill patients: a prospective, randomized comparison of two techniques. Crit Care Med 2000, 28: 3734-3739. 10.1097/00003246-200011000-00034View ArticlePubMedGoogle Scholar
  54. Ambesh SP, Pandey CK, Srivastava S, Agarwal A, Singh DK: Percutaneous tracheostomy with single dilatation technique: a prospective, randomized comparison of Ciaglia blue rhino versus Griggs' guidewire dilating forceps. Anesth Analg 2002, 95: 1739-1745. 10.1097/00000539-200212000-00050View ArticlePubMedGoogle Scholar
  55. Byhahn C, Wilke HJ, Lischke V, Rinne T, Westphal K: Bedside percutaneous tracheostomy: clinical comparison of Griggs and Fantoni techniques. World J Surg 2001, 25: 296-301. 10.1007/s002680020087View ArticlePubMedGoogle Scholar
  56. Westphal K, Byhahn C, Wilke HJ, Lischke V: Percutaneous tracheostomy: a clinical comparison of dilatational (Ciaglia) and translaryngeal (Fantoni) techniques. Anesth Analg 1999, 89: 938-943. 10.1097/00000539-199910000-00022PubMedGoogle Scholar
  57. Oberwalder M, Weis H, Nehoda H, Kafka-Ritsch R, Bonatti H, Prommegger R, Aigner F, Profanter C: Videobronchoscopic guidance makes percutaneous dilational tracheostomy safer. Surg Endosc 2004, 18: 839-842.PubMedGoogle Scholar
  58. Ben Nun A, Altman E, Best LA: Extended indications for percutaneous tracheostomy. Ann Thorac Surg 2005, 80: 1276-1279. 10.1016/j.athoracsur.2005.02.007View ArticlePubMedGoogle Scholar

Copyright

© Delaney et al., licensee BioMed Central Ltd. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.