Skip to main content

Prehospital hypothermia

Mild hypothermia is widely used in the treatment of successfully resuscitated patients after cardiac arrest [1]. Previous experimental and clinical studies have demonstrated beneficial effects of cooling after cardiac arrest. Two clinical landmark studies in 2002 demonstrated the use of therapeutic hypothermia after cardiac arrest due to ventricular fibrillation decreases mortality and improves neurological outcome [2, 3]. This led the International Liaison Committee on Resuscitation and the American Heart Association to recommend the use of therapeutic hypothermia after cardiac arrest as soon as possible after the return of spontaneous circulation (ROSC) [4].

Despite major progress in intensive care medicine in the last decades, mortality rates after cardiac arrest remain unacceptably high [2, 3]. The high mortality rates after cardiac arrest can be attributed to a unique pathophysiological process [1, 5, 6]. The entity of the pathophysiological changes after ROSC - for example, activation of the inflammatory system - can be summarized as the post-cardiac arrest syndrome [1, 57].

Hypoxic encephalopathy, which is often a result of the initial hypoxic phase and/or the post-cardiac arrest syndrome, is one of the main causes for mortality, disability and a need for permanent care in patients after cardiac arrest [1].

Pathophysiologically, the resuscitation period could be divided into different time periods. After cessation of circulation, ischemia of different tissues leads to necrotic cell death (hypoxia-induced cellular dysfunction) [7, 8]. Reperfusion injury then follows after an imprecise period of time once oxygenated blood is returned to the ischemic tissues with the beginning of mechanical resuscitation (reperfusion-induced cell death) [7, 8]. From experimental and clinical studies, it is clear that the tissue damage due to reperfusion occurs over several hours to days in the post-resuscitation phase [1, 7, 8].

Several experimental studies have emphasized induction of therapeutic hypothermia as soon as possible after ROSC or during cardiopulmonary resuscitation [710]. These studies in the different animal models demonstrate a beneficial effect, including attenuation of the cerebral injury after prolonged ischemia due to earlier cooling [710]. Recent experimental data in different animal models of cardiac arrest, stroke and myocardial infarction suggest that warm reperfusion under normal or hyperthermic conditions could increase the deleterious effects of the reperfusion. For the effective prevention and treatment of the reperfusion injury, reperfusion should occur in temperature-controlled or cooled tissues.

Nevertheless, prehospital induction of therapeutic hypothermia is still under discussion; consistent protocols are not present and human data are rare. In a retrospective clinical study, early achievement of the target temperature appeared to reduce hypoxic brain injury and favor a good neurologic outcome after successful resuscitation [11].

On the other hand, a small retrospective, observational investigation found a faster decline in body temperature to the target temperature is linked to a less favorable neurologic outcome in comatose patients after cardiac arrest treated with therapeutic hypothermia [12]. However, this may simply indicate a severe ischemic damage with consecutive impaired thermoregulation [12].

In the PRINCE study, feasibility of preclinical transnasal cooling with evaporated perfluorcarbon that primarily leads to a prior selective cooling of the cerebrum was analyzed. In a subgroup of patients, intra-arrest hypothermia via evaporated perfluorcarbon was beneficial [13, 14]. Several other studies show also safety and feasibility of prehospital hypothermia [15, 16]. In summary, prehospital treatment of patients with a cardiac cause of the arrest may increase the rate of favorable outcome at hospital discharge. Further larger clinical investigations are needed to evaluate the effects of prehospital cooling in cardiac arrest patients [7, 8]. In a small survey of emergency physicians in Germany, only a minority of patients is frequently treated with hypothermia before hospital admission after successful resuscitation [7, 8].

However, taking the pathophysiological processes into consideration, induction of therapeutic hypothermia should not be limited to the ICUs but should also be able in the field or in the emergency department. Different methods are available to achieve and maintain the target temperature in the prehospital setting [7, 8].

References

  1. Nolan JP, Neumar RW, et al: Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Resuscitation. 2008, 79: 350-10.1016/j.resuscitation.2008.09.017.

    Article  PubMed  Google Scholar 

  2. Hypothermia After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002, 346: 1756-

    Google Scholar 

  3. Bernard SA, Gray TW, Buist MD, et al: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002, 346: 557-10.1056/NEJMoa003289.

    Article  PubMed  Google Scholar 

  4. ECC Committee, Subcommittees and Task Forces of the American Heart Association: American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2005, 112 (24 Suppl IV): 1-203.

    Google Scholar 

  5. Negovsky VA: The second step in resuscitation: the treatment of the 'post-resuscitation disease'. Resuscitation. 1972, 1: 1-7. 10.1016/0300-9572(72)90058-5.

    Article  CAS  PubMed  Google Scholar 

  6. Fink K, Feldbrügge L, Schwarz M, et al: Circulating annexin V positive microparticles in patients after successful cardiopulmonary resuscitation. Crit Care. 2011, 15: R251-10.1186/cc10512.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Taccone FS, Donadello K, Beumier M, et al: When, where and how to initiate hypothermia after adult cardiac arrest. Minerva Anestesiol. 2011, 77: 927-933.

    CAS  PubMed  Google Scholar 

  8. Lampe JW, Becker LB: State of the art in therapeutic hypothermia. Annu Rev Med. 2011, 62: 79-93. 10.1146/annurev-med-052009-150512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Boddicker KA, Zhang Y, Zimmerman MB, et al: Circulation. 2005, 111: 3195-3201. 10.1161/CIRCULATIONAHA.104.492108.

    Article  PubMed  Google Scholar 

  10. Zhao D, Abella BS, Beiser DG, et al: Resuscitation. 2008, 77: 242-249. 10.1016/j.resuscitation.2007.10.015.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wolff B, Machill K, Schumacher D, et al: Early achievement of mild therapeutic hypothermia and the neurologic outcome after cardiac arrest. Int J Cardiol. 2009, 133: 223-228. 10.1016/j.ijcard.2007.12.039.

    Article  PubMed  Google Scholar 

  12. Haugk M, Testori C, Sterz F, et al: Relationship between time to target temperature and outcome in patients treated with therapeutic hypothermia after cardiac arrest. Crit Care. 2011,

    Google Scholar 

  13. Castrén M, Nordberg P, Svensson L, et al: Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation. 2010, 122: 729-736. 10.1161/CIRCULATIONAHA.109.931691.

    Article  PubMed  Google Scholar 

  14. Busch HJ, Eichwede F, Födisch M, et al: Safety and feasibility of nasopharyngeal evaporative cooling in the emergency department setting in survivors of cardiac arrest. Resuscitation. 2010, 81: 943-949. 10.1016/j.resuscitation.2010.04.027.

    Article  PubMed  Google Scholar 

  15. Bernard SA, Smith K, Cameron P, et al: Rapid Infusion of Cold Hartmanns (RICH) Investigators: Induction of prehospital therapeutic hypothermia after resuscitation from nonventricular fibrillation cardiac arrest. Crit Care Med. 2012, 40: 747-753. 10.1097/CCM.0b013e3182377038.

    Article  PubMed  Google Scholar 

  16. Busch HJ, Brendle V, Bode C, Koberne F, Schwab T: Prehospital hypothermia after cardiac arrest a survey the in emergency physician based ambulance system in Baden-Wuerttemberg, Germany. Notfall Rettungsmed. 2011, 11: 1474-1480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article

Busch, HJ., Fink, K. Prehospital hypothermia. Crit Care 16 (Suppl 2), A3 (2012). https://doi.org/10.1186/cc11261

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/cc11261

Keywords